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ABSTRACT 

Artificial intelligence has grown extensively, in both application and theory, in recent 

years. Much of the growth in application can be attributed to increased data generation 

and processing techniques, and much of the growth in theory can be attributed to 

advancements in deep learning techniques. As a result of these advancements, however, 

there is an increasing problem related to model interpretability and explainability of 

results; for many of the state-of-the-art techniques used today, it is extremely difficult to 

retrieve any useful information to explain why a model makes its decisions, meaning that 

many industries which require high levels of accountability, such as defense, health care, 

and other regulated industries such as insurance, cannot use many of the most powerful, 

modern modeling techniques. This study expands upon the body of work being 

developed in the field of explainable artificial intelligence, which focuses on building 

artificial intelligence with greater interpretability in mind. This study investigates how 

traditional classification trees, a prototypical interpretable machine learning algorithm, 

can be made more powerful but maintain much of their interpretability by identifying 

multivariate splits. The resulting algorithm, the Linear Regression Classification Tree, is 

then tested against many existing techniques, both interpretable and uninterpretable, to 

determine how its performance and explainability compares to other commonly used 

techniques. 
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CHAPTER 1: INTRODUCTION 

 

Background of Study 

Machine learning (ML) and artificial intelligence (AI) have seen significant amounts of 

growth in recent years (Bianchini, Müller, & Pelletier, 2020). Advances in data processing 

speeds, data creation speeds, and ML algorithms have contributed to the transformation of AI 

from largely experimental and academic to operational and deployed (Bianchini, Müller, & 

Pelletier, 2020). However, some of the largest barriers to the widespread adoption of these 

technologies are user acceptance and policy requirements. In many enterprises, individuals who 

lack experience with ML often doubt its usefulness and do not trust its predictions in their 

specific domains (Zhu, Liapis, Risi, Bidarra, & Youngblood, 2018). Additionally, many 

organizations and industries face heavy legal and policy restrictions regarding the use of 

automated prediction techniques. Regulation and governance are also growing; data privacy 

concerns and inappropriate model biases have led to regulations such as the General Data 

Protection Regulation (GDPR) (European Commission, 2018) in the European Union. 

Regulations such as this represent a great victory for society at large, but they also represent a 

paradigm shift for those building AI applications: it is no longer enough to have models that 

provide accurate predictions, but rather also provide assurance that data is being used in a 

compliant manner with the rights and interests of the data collection subjects at the forefront. 

Some of the most powerful predictive models, such as deep learning (DL) models, 

ensemble methods, and support vector machines (SVMs), are likewise some of the most difficult 

to explain and are logically unintuitive due to the complexity of the decision functions these 

models make (Wenzel, Galy-Fajou, Deutsch, & Kloft, 2017). When using many of these 
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methods, especially deep neural networks, even those who create the models are largely unable 

to understand why a model makes the decisions it does, sometimes leading to unexpected biases 

in models (Kodiyan, 2019). With the rising privacy and data mishandling concerns discussed 

above, and especially for industries such as defense, healthcare, transportation, and insurance, 

this lack of interpretability can be a significant deterrent from adopting ML and AI techniques. 

While deep learning has advanced AI and ML tremendously in the past decade, for many 

industries there is a significant need to research and develop interpretable models further. If this 

research is not done, the risk is continued loss of adoption of ML and AI technologies in multiple 

critical industries, resulting in further risks to human health, safety, and possibly lives. 

 

Problem Statement 

With much of current ML research focusing on DL techniques, many industries and 

problem spaces which require high levels of interpretability and accountability when making 

decisions have suffered from lack of innovation in interpretable modeling technologies. Some of 

these industries include, but are not limited to, defense, health care, transportation, and insurance. 

Most recent innovations in interpretable modeling techniques have occurred years or decades 

ago. With interpretable ML technologies lagging their opaque counterparts, there is real risk that 

these industries will fall too far behind in the race to adopt and integrate ML and AI 

technologies, putting people at risk for a variety of reasons.  

Purpose of Dissertation Study 

While there has emerged out of the problem of interpretability a new field, namely 

“Explainable Artificial Intelligence” (XAI) (Barredo Arrieta, et al., 2019; Gunning & Aha, 

2019), further research into this field reveals that most work has focused on adding 
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interpretability to DL techniques and that most of the techniques developed in this field are not 

general in nature (Gilpin, et al., 2018). While techniques such as Local Interpretable Model-

Agnostic Explanations (LIME) (Ribeiro, Singh, & Guestrin, 2016) have been shown to be useful 

in creating a level of explanation for any type of classification model, these methods still fall 

short in providing the highest levels of interpretability needed for some applications. This is due 

to the methods LIME uses to make its explanations; instead of explaining the model itself, LIME 

tries to describe how the model’s predictions change on a single example by perturbing features 

randomly (Ribeiro, Singh, & Guestrin, 2016). 

As an attempt to foster more widespread adoption of ML technologies in highly regulated 

industries and on problems that require more-complete understanding of a model’s internal 

decision structure, this research will focus on developing and testing a new interpretable ML 

model, the Linear Regression Classification Tree (LRCT). The goal of this work will thus be to 

investigate whether LRCT models improve upon traditional classification trees by utilizing a new 

feature engineering technique which identifies multivariate linear and nonlinear splits. Part of the 

motivation behind this feature engineering technique is to partially mimic the internal state 

representations and complex relationships which neural networks learn (LeCun, Bottou, Bengio, 

& Haffner, 1998; Tarsala & Kasprzyk, 2021) and which improve their predictive capabilities. 

If this research is successful, it will help improve the state of the art of interpretable ML. 

With the development of a successful LRCT algorithm, ML practitioners will have a more-

powerful model type at their disposal when interpretability is required. By utilizing this new 

LRCT model, individuals and teams facing problems requiring interpretability will be able to 

meet strict regulatory requirements while also taking advantage of more recent innovations in the 

field and obtaining more accurate predictions. 
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Significance of the Study 

In the long term, the success of this research will help improve the state of interpretable 

ML. With the development of a successful LRCT model, ML practitioners will have at their 

disposal a new, highly explainable model which could be deployed in mission-critical systems 

and application areas. Such a model would help bridge the gap between the most powerful 

predictive models and the most interpretable ones. It is also hoped that the divergence in 

approach of this work, specifically its focus on improving already-interpretable models rather 

than adding interpretability to powerful ones, will also attract interest in different areas of XAI. 

 

Nature of Study 

There is no question that the recent surge of ML and AI is one of the defining 

characteristics of today’s world. Showing AI’s prominence in everyday life, even YouTube has 

identified this trend and has made a short series dedicated to showcasing AI’s feats, even hiring 

Robert Downey Jr. as host (The Age of AI, 2019). This attention is warranted; there have been 

rapid improvements in the state of the art for many difficult prediction tasks in the past decade. 

Not the least of these are the introduction of the convolutional neural network (Tarsala & 

Kasprzyk, 2021) and transformer architectures (Vaswani, et al., 2017), which have directly 

contributed to improvements in the state of the art in image recognition (Simonyan & Zisserman, 

2014) and natural language processing (NLP), (Devlin, Chang, Lee, & Toutanova, 2018; Lan, et 

al., 2019; Liu, et al., 2019) respectively. 

Researchers have, however, focused largely on DL techniques in recent times (Roscher, 

Bohn, Duarte, & Garcke, 2020). DL, for all its benefits, has a glaring drawback when it comes to 

interpretability. Large neural networks such as the now-famous BERT model (Devlin, Chang, 
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Lee, & Toutanova, 2018) have millions of parameters, and though there is promising research 

that has been shown to drastically reduce the number of parameters needed to perform prediction 

tasks with similar performance levels (Frankle & Carbin, 2018), true DL model interpretability 

seems unlikely. What makes this problem even more pervasive is that artificial neural networks 

(ANNs) have been shown to learn undesired biases in data, such as implicit association of the 

word “doctor” more with “man” than with “woman” (Dev & Phillips, 2019). This problem of 

explainability has led to the rise of XAI, but most of the research in this field has been dedicated 

to improving ANN explanations, rather than improving predictive capabilities of already-

interpretable models. 

Despite current research efforts, ML is not synonymous with DL. There are many ML 

model types that have seen little-to-no innovation in years or even decades. One such model 

type, often considered one of the most interpretable due to its simple-to-understand decision 

structure, is the decision tree. While there have been a number of innovations, such as random 

forests (Breiman, Random Forests, 2001) or adaboost (Freund & Schapire, 1997), which use 

ensembles of decision trees, little progress has been made to improve the underlying learning 

algorithm of a single decision tree since their inception. This phenomenon will be explored in 

more depth in Chapter 2 of this work, as it will lay the groundwork for the research done in this 

study. 

 

Hypotheses/Research Questions 

To answer the problem at hand, there are several questions to be answered and assumptions 

to be made. Firstly, the primary question to be addressed in this research study is: 
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Can an inherently interpretable algorithm be developed with improved performance over 

traditional interpretable models? 

To answer this question, this work will focus on devising and testing an improvement to 

classification trees. The classification tree was chosen for the base learning algorithm because of 

(a) its high interpretability levels and intuitive decision structure, (b) the prevalence of tree-based 

models in practice, and (c) the fruitful research in developing further iterations based on other 

decision tree models (Breiman, Random Forests, 2001; Freund & Schapire, 1997; Chen & 

Guestrin, 2016; Friedman, 2002). To help answer the primary research question (RQ), the 

following RQs have also been posed to be answered in this work: 

– RQ1: What methods have been created to induce multivariate splits in classification trees, 

and what are their shortcomings? 

– RQ2: Does applying linear regression as a feature engineering and selection technique in 

classification tree learning improve predictive performance over traditional classification 

trees? 

– RQ3: Do procedures analyzed in RQ2 also improve predictive performance over three of the 

most common interpretable algorithms? 

– RQ4: How does this new algorithm compare in predictive performance to methods found in 

RQ1? 

To answer the RQs above, and ultimately to answer the primary RQ, the following 

research goals have been identified. Through successful completion of these goals, a rigorous 
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argument can be made for the validity and impacts of this research. The following outlines the 

goals and their contributions toward answering the proposed RQs: 

1. Conduct literature review to explore previous work in multivariate 

classification tree learning. To increase level of expertise and show the novelty of the 

algorithm developed through this research, a thorough literature review is conducted to 

identify previous methods for creating multivariate splits in classification trees. This review 

will provide an answer to RQ1, will provide a foundation to answering RQ4, and will assist 

in identifying the advancements made by this research. 

2. Develop a methodology for creating multivariate splits in classification trees. After 

researching existing methods for creating multivariate splits in classification trees, research 

will focus on creating a new method for doing so. Specifically, the goal of this new method 

will be approximating optimal linear and polynomial splits utilizing a combination of 

binning techniques and linear regression. This work will expand on the method developed 

and show how it is able to create accurate estimates of the multivariate surface function 

which optimally divides the classes being learned. Completing this step assists in answering 

RQ2, RQ3, and RQ4. 

3. Apply multivariate split learning procedure to classification tree learning, formalizing 

the LRCT algorithm. After the splitting procedure is created, the method will be applied 

to classification tree learning, resulting in the final algorithm this research aims to develop. 

This work will assist in answering RQ2, RQ3, and RQ4. 

4. Conduct a series of experiments utilizing artificial data to test algorithm performance 

to learn specific multivariate decision boundaries. Next, a series of experiments will be 
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conducted to test the LRCT algorithm’s ability to learn various decision boundaries, such as 

linear and polynomial splits across varying numbers of variables. In these experiments, 

various other kinds of models will be utilized as well, thus giving an estimate of comparative 

performance for LRCT against other model types. This step will assist in answering RQ2, 

RQ3, and RQ4. 

5. Conduct a series of experiments utilizing collected, real-world data. After completing 

experiments on artificial data, experiments on “real-world” data will be conducted. Because 

the goal of this research is to develop an interpretable algorithm that improves predictive 

performance over traditional interpretable methods, the LRCT algorithm must be tested on 

true, collected data. Without such experiments, this study would be incomplete; with these 

experiments, a better estimate of true performance will be achieved. This step will assist in 

answering RQ2, RQ3, and RQ4. 

6. Analyze experiment data, make conclusions, and recommend direction of future work. 

Once experimentation is complete, the results will be analyzed in depth. Model 

performances will be compared and analyzed to determine answers to research questions 

RQ2, RQ3, and RQ4. After these answers are provided, directions for future work will be 

recommended. 

 

Definitions of Fundamental Terminology 

Before proceeding, it is important to clearly define some important terms. These terms, 

while not all-encompassing in this research, will properly frame this work and provide clarity for 

the reader. 
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– Artificial Intelligence is defined as the broad, interdisciplinary field of study which seeks 

to endow computer systems with behaviors that mimic human intelligence. While this 

definition is rather simple, the field of artificial intelligence is extremely complex and 

utilizes findings from many fields, including computer science, mathematics, statistics, 

neuroscience, psychology, and others. 

– Machine Learning is a sub-field of Artificial Intelligence which is focused on creating and 

using algorithms to create and derive insight using past data. This is done by creating a 

function which maps input data to some output, typically with the goal of minimizing a loss 

function, which serves as a measure for the overall error of the learned function. 

– Supervised Learning is a subset of machine learning where training data comes of the form 

of input and output pairs. The learning algorithm uses these input data to learn a function 

which accurately predicts the output values from the input data. The defining characteristic 

of supervised learning is that it makes use of already-labeled data. 

– Unsupervised Learning is a subset of machine learning where training data is not labeled. 

Instead of trying to predict specific outcomes, the goal of unsupervised learning is to 

discover underlying relationships within the data being modeled. This is typically done by 

identifying some form of underlying groups within the training data. This work will not 

focus on unsupervised learning techniques. 

– Regression is a subset of supervised learning in which the value to be predicted lies on a 

continuum. Take for example the problem of using features of a home to predict the selling 

price of the home. For simplification purposes, the possible values for a home selling price 
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may be taken to be any positive number, thus making this problem a regression problem. 

This work will not focus on regression techniques. 

– Classification is a second subset of supervised learning in which the value to be predicted 

lies within a set of categories instead of on a continuum. For example, taking an image of a 

handwritten digit and identifying the digit that is drawn would be an example of a 

classification problem, as the label for the handwritten image could only be one of ten 

distinct values. Each of the images would belong to one distinct category which corresponds 

to the number represented in the image. 

– Features are the inputs to a ML algorithm. As ML models are mathematical models, each 

of these features supplied to the algorithm must be numeric or somehow converted to a 

numeric value. Continuing with the previous two examples: the image classification 

regarding photos of handwritten digits and the product price regression problem, there are 

several features available for both scenarios. In the image classification problem, each of the 

pixels in the images is a feature. These pixels have intensity values, often ranging from 0 to 

255 for each of the red, green, and blue color channels, if the images are in color, or simply 

a single value between 0 and 255 for greyscale images. In contrast, there may be many 

different features available in the price regression problem, including the number of 

bedrooms for the home, the number of bathrooms, the location, the lot size, and others. 

– Feature Engineering is the process of deriving new features using features already 

available. This process can take many forms, from creating combinations of variables to 

complicated preprocessing steps. This stage is often one of the most important in the ML 

pipeline, as discovering information rich features - features that are highly correlated with 

the label - can lead to simpler, more-robust, and overall better models. 
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At its core, ML is a field focused on creating and using algorithms to allow a computer to 

automatically detect, identify, and exploit relationships in data for predictive purposes. This is 

done by “learning” a function that maps input data to some output, typically with a goal of 

minimizing a loss function - a way of measuring the error of the learned function. ML has existed 

long before the recent surge in deep learning techniques. This work will explore advances in 

interpretable methods, specifically methods based on classification trees. This work will then 

explore and present a new method for utilizing linear regression and impurity-based splitting 

techniques as an automatic feature engineering method in classification tree learning. The result 

is a new, explainable classification tree model which can make linear and nonlinear multivariate 

splits. This work highlights the novel capabilities this new model has and showcases its 

capabilities in multiple learning situations. 

In addition to a generalized vocabulary, developing a unified terminology for XAI is 

essential for the success of the research to be conducted. While a single, unified terminology has 

not been universally agreed upon due to the field still being in its infancy, work has been done to 

develop this standard terminology; this research will rely heavily on the review conducted in  

(Barredo Arrieta, et al., 2019) for key definitions and vocabulary. A list of essential terms 

follows: 

- Understandability is a model characteristic. This characteristic refers to the ability for a 

human to understand the model’s inner working without need for explaining its internal 

structure of how the model processes its input data (Montavon, Samek, & Muller, 2018). 

- Comprehensibility is the ability of an algorithm to demonstrate its knowledge about its 

given task in a way that is understandable to humans (Ferndandez, Herrera, Cordon, Jose 

del Jesus, & Marcelloni, 2019; Gleicher, 2016; Odense & Garcez, 2020). 



12 
 

 

- Interpretability is another ability a model can possess. In contrast to comprehensibility, 

interpretability is the ability of a model to either explain or provide meaning in human 

understandable terms  (Barredo Arrieta, et al., 2019). 

- Explainability, in terms of ML, refers to the providing of an explanation using an 

interface between a human and the model (Guidotti, et al., 2018). 

- Transparency refers to a characteristic of a model to by itself be understandable (Lipton, 

2017). This family of models can be further broken down into three subgroups, 

simulatable models, decomposable models, and algorithmically transparent models. An 

exploration of this breakdown will be done in a later section exploring current theories in 

XAI. 

 

Scope, Limitations, and Delimitations 

It is important both for the reader and for research purposes to identify the scope and 

limitations of this research. Concretely defining these will assist in both focusing and framing 

this research, as well as help in identifying direction for future work. 

This study will primarily focus on applied results, rather than purely theoretical ones. 

While the theory behind the LRCT algorithm defined here will be presented and discussed in 

depth in a further chapter, this work will focus on developing an understanding of how the 

algorithm performs in a variety of situations. The ideas in (Breiman, Statistical Modeling: The 

Two Cultures, 2001) are drawn upon heavily for theoretical justification in this regard. In that 

work, the author cites his experience to describe two cultures in the statistical modeling 

community. The first of these cultures is largely focused on modeling and understanding the way 

data is generated; the second is focused on modeling the outcomes without regard for the data 
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generation model. The author argues that this second “culture” often leads to more-general 

classes of models, as no assumptions about the data are required. The research conducted in this 

current study follows with those assertions the author makes about the second culture; the model 

developed and presented here makes minimal assumption about the underlying relationships or 

structure within the data but instead learns in a way that attempts to generalize upon the data 

presented. 

The main goal of this research will be to develop an interpretable model which 

outperforms existing interpretable models. This work is therefore scoped such that predictive 

performance is the primary goal. In Chapter 3, the theoretical aspects and design choices for the 

algorithm will be presented. This chapter is included to explain the model’s inner logic and 

provide a basis for why the algorithm can outperform traditional interpretable methods, but 

Chapter 4 will contain the empirical justification that the model does in fact outperform these 

other methods using experimental results. While the contents of Chapter 3 are vital to this 

research, the true focus is on the applicability and utility of the methods presented in this work. 

Clearly, the limitation of such a design choice is that the results rely on the data to be 

modeled. It would be possible to create data that would favor one algorithm type over the other. 

The design of this research takes multiple measures to mitigate such factors. Firstly, in the 

experiments on artificial data, multiple experiments are run with various data generation 

techniques. While certain data will be expected to favor one model type over another, care will 

be taken to run multiple experiments with various properties to help understand generalized 

behavior. Additionally, multiple experiments will be run on well-known, real world collected 

datasets. 
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Chapters Overview 

This work will consist of five chapters, the first of which is this introduction. The following 

chapters will each address an important component of the research, including a thorough 

literature review, formal definition of the LRCT algorithm and experimental methods, results, 

and conclusions. Further detail on these chapters can be found in the following list. 

– Chapter 2 consists of a thorough literature review regarding many of the topics this work 

falls under. A historical perspective of machine learning is provided, along with a review 

of decision tree techniques and recent developments in decision tree technologies. 

Additionally, literature surrounding the seminal field of "Explainable AI" is reviewed. 

– Chapter 3 is where the LRCT algorithm is defined and explained. This chapter enumerates 

the design choices made and presents a mathematical reasoning behind those design 

choices. Detailed overviews of the splitting and learning procedures are explained here. 

After defining the algorithm, Chapter 3 then outlines the experimental design and methods 

for future chapters. 

– Chapter 4 reports on experiments testing LRCT against artificial and collected data. An 

integral part of this research’s design, these experiments allow for testing the algorithm 

against specific data patterns and relationships under controlled circumstances as well as 

testing the algorithm on real-world data. This chapter provides the experimental evidence 

which is then used to draw conclusions to answer this work’s research questions. 

– Chapter 5 builds upon the work done in all previous chapters to draw conclusions and 

recommend future directions of work. In this chapter, the results of all previous 

experiments are examined in detail to determine the answers to each of the research 
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questions posed earlier in Chapter 1. Once each of the questions are addresses, the results 

of this work are examined in further detail to recommend further questions to be answered, 

providing a recommendation for future research in this area. 

 

Chapter Summary 

 In this chapter, an overview of the background surrounding this dissertation study 

was provided. First, a brief overview of AI techniques was presented, followed by a discussion 

of the problem to be addressed by this research. Next, a more detailed description of the purpose 

and significance of the study to be done was completed, including a set of primary research 

questions to be answered and steps to be completed. Thirdly, an overview of fundamental 

terminology in AI was presented, and finally an outline of the future chapters in this work was 

presented. In the next chapter, a detailed overview of existing literature will be conducted to 

provide context and framing for this research. 
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CHAPTER 2: LITERATURE REVIEW 

 Despite the recent surge of interest in the public’s eye, ML and AI are not “new” fields. 

Alan Turing, considered by many to be the father of modern computer science, famously posed 

the question “can machines think?” in a work published in 1950 (Turing, 1950), marking the 

birth of modern AI. This question has garnered much interest in the time since it was asked; 

perhaps the most thought-provoking of the responses came in 1980 in a paper titled “Minds, 

Brains, and Programs” in which the author presents what is now known as the Chinese Room 

Argument (Searle, 1980). The author argues that mimicking human capabilities – he uses the 

example of question answering as a proxy of true language understanding – does not imply true 

“thought,” at least in a human sense. This analogy can be likened to a parrot, which can learn to 

replicate the sounds of human language but cannot understand the meaning of what it is saying. 

 Despite the arguments noted in the preceding paragraph regarding whether AI in its 

current state truly can be considered intelligent, research in and adoption of ML technologies, 

particularly DL technologies, have defined a large portion of computer science in the twenty first 

century. Having identified these trends, this work will seek to explore and expand upon some 

both current and past developments in the field. In particular, the seminal field of XAI will be 

examined through the lens of the much older technology of classification trees. Literature in both 

areas will be examined and analyzed to frame the research and provide a more thorough 

understanding of the current state of these technology areas. In this chapter, that review is 

conducted. Firstly, research into decision tree technologies will be conducted, followed by 

research into XAI. The decision tree review will focus heavily on classification tree 

technologies, as the research to be conducted will focus on developing a new type of 

classification tree. The review of XAI will highlight the field, provide definitions to critical 
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terminologies, and highlight some of the gaps in the literature. Once these reviews are 

completed, their intersection will be examined to identify gaps in theory and provide a 

foundational setting for the research to be conducted. 

 

Decision Trees 

Decision trees, specifically classification trees, can be considered one of the prototypical 

interpretable ML algorithms (Brodley, Utgoff, & Kibler, 1995; Awaysheh, et al., 2019). The 

simple-to-follow decision structure these models exhibit lends itself perfectly for human 

interpretation (Brodley, Utgoff, & Kibler, 1995). Consider for example Figure 1, taken from 

(Breiman, Friedman, Olshen, & Stone, 1984), which contains a diagram of a tree trained to 

predict high and low risk heart attack patients. Notice the simplicity of the decision structure; 

only a maximum of three data points from a patient is needed to make a decision. Furthermore, 

the decision structure is easily understood in human terms, and the resulting model can be 

examined and validated by physicians to ensure that scientifically valid relationships are learned 

and utilized. In the following section, a brief history of decision tree technologies will be 

presented. Following this history will be a discussion of more recent theories and evolutions with 

regards to decision trees. Finally, alternative theories and gaps in the literature will be reviewed 

as well. 
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Figure 1. Heart Attack Risk Classification Decision Tree, taken from  (Breiman, Friedman, 

Olshen, & Stone, 1984). 

 

Brief History 

 Decision trees are perhaps most commonly associated with Classification And 

Regression Trees (CART) (Breiman, Friedman, Olshen, & Stone, 1984), but the methodology 

predates these authors’ implementation by decades. The first regression tree algorithm, 

“Automatic Interaction Detection” (AID), was published in 1963 (Morgan & Sonquist, 1963). 

AID utilizes a greedy search to fit a piecewise-constant regression model on training data. Much 

like other regression tree algorithms, AID creates this decision function by splitting and reducing 

individual node impurities; specifically, the impurity function used in the original algorithm is 

the sum of squared errors, seen in Equation 1. In this equation, let n denote the individual node 

under consideration, yi be the true value for instance i, and 𝑦!"  be the value predicted by the tree 

for the instance. 
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 Nearly ten years later, in 1972, Messenger and Mandell created the first classification tree 

algorithm, “Theta Automatic Interaction Detection” (THAID) (Messenger & Mandell, 1972). 

This algorithm behaves very similarly to contemporary models, by creating recursive splits to 

attempt to maximize the number of instances in the modal category. This modal category is then 

taken to be the predicted class at that node. 

 In 1980, Kass created the Chi-squared Automatic Interaction Detection tree (CHAID), 

which furthered the theories behind decision trees by utilizing a merge and split procedure which 

applies a chi-squared test statistic (Kass, 1980). Despite its effectiveness, CHAID’s major 

drawback is that it is only capable of splitting on categorical predictors (Wilkinson, 1992). 

 

Φ(n) =((y" − y#")$
"∈&

 

Equation 1. Sum of Squared Errors. Let 𝑛 refer to the individual node under consideration, 𝑖 

refer to an instance located at that node, 𝑦' be the actual target variable for that instance, and 𝑦!"  

be the predicted target variable for that instance. 

 

 It was not until 1984 when the now-famous Classification and Regression Trees (CART) 

book was released. The CART algorithm is widely used by ML practitioners applying decision 

tree analysis to this day, and it has many popular software implementations in programming 

languages commonly used for ML (Pedregosa, Varoquaux, Gramfort, & Michel, 2011; Therneau 

& Atkinson, 2019). The main innovation this algorithm possesses compared to previous 

implementations is its automatic pruning procedure. The procedure CART applies uses cross 

validation to automatically determine the optimal pruned size of the learned tree using hold out 

data as an estimate for global performance (Breiman, Friedman, Olshen, & Stone, 1984). While 
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this is a standard technique used in ML modeling (James, Witten, Hastie, & Tibshirani, 2013), 

the automatic performance of this cross validation makes CART particularly powerful. For 

classification purposes, CART utilizes Gini impurity measure to determine optimal splits. Gini 

impurity is calculated using Equation 2, where N represents the number of classes to be 

predicted, and pi be the proportion of instances at a given node of class i. 

 

𝐼( = 1 −(𝑝'$
)

'*+

 

Equation 2. Gini Impurity Measure. Let 𝑁 be the number of classes to be predicted, 𝑖 be the 

specific class under consideration, and 𝑝' be the proportion of instances at the given node of 

class 𝑖. 

 

 After CART was proposed, Quinlan proposed the ID3 algorithm  (1986) and an improved 

version, C4.5, was proposed in 1993 (Ross, 1993). These algorithms diverge from CART only 

slightly, having just two major differences. Firstly, an entropy-based impurity measure called the 

gain ratio is used as an impurity measure in classification. Secondly, categorical variables are 

first split into each of the individual classes and merged again until an optimal split is found. 

What should be noted after presenting this historical review is the age of the work. While 

the following sections will highlight more current research and innovations in the field, the 

underlying methodologies for applying decision tree splitting procedures are decades old; most 

of the methods are nearly 30 years old at the time of this writing. 
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Recent Innovations: Ensemble Methods and Anomaly Detection 

Despite being an older methodology, decision trees are still commonly used in practice. 

While decision trees are considered one of the most interpretable model types, recent 

innovations, such as ensemble methods, have become increasingly opaque. This will be 

investigated further in the following paragraphs, but it is important to note that the increased 

opacity directly conflicts with some of the basic characteristics of the original decision tree 

models. 

In ML, an ensemble model is a form of aggregate model which consists of multiple 

individual models, usually of the same type. Ensembles have been shown to be more performant 

than individual models, but they also result in a loss of interpretability due to the resulting need 

to interpret many models instead of one (Breiman, Random Forests, 2001; Chen & Guestrin, 

2016; Breiman, Statistical Modeling: The Two Cultures, 2001; Brodley, Utgoff, & Kibler, 1995; 

Masegosa, 2020; Lee, Ullah, & Wang, 2020). The following few paragraphs will explore a 

selection of some of the most prolific tree-based ensemble methods. 

Bootstrap AGGregatING (bagging) is one of the first tree-based ensemble methods 

created (Lee, Ullah, & Wang, 2020). While not necessarily tied to a single model type, bagging 

is often used with classification trees, as is done in the original paper. Bagged models are 

constructed by randomly applying bootstrap sampling to the original training data to generate 

multiple training sets. Individual classifiers are then trained on each of these training sets, with 

the overall prediction for a new instance being the most predicted class among all model votes. 

In his paper, Breiman notes that bagging performs particularly well when a learning procedure is 

unstable, a noted characteristic of trees trained using the CART algorithm (Master, et al., 2017)  

that refers to the phenomenon where small changes in training data may cause large changes in 
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the resulting model. Breiman further shows that the higher the model instability, the better 

performance a bagged model will perform; this is attributed to the bootstrapping method used to 

generate training sets (Lee, Ullah, & Wang, 2020). 

Random forests are another ensemble method, but these models are tied specifically to 

decision trees. Like bagging, random forests also generate ensembles of trees based on bootstrap 

samples of the training data. However, there are two main differences between the techniques. 

The first of these is that each tree in a random forest is trained until no further splitting can be 

made on the data the specific tree is training on. Secondly, the features in the training data used 

to train each individual tree in a random forest are also randomly selected (Breiman, Random 

Forests, 2001). This randomized feature selection allows different trees to learn different feature 

relationships and ensures that each tree is not exploiting the same relationships. These 

combinations of features of random forests have been shown to improve the generalization of 

random forest models (Breiman, Random Forests, 2001). 

In addition to the previously mentioned ensemble methods, which each take votes from 

each individual model equally, there are also ensemble methods referred to as boosting  (Freund 

& Schapire, 1997; Chen & Guestrin, 2016; Friedman, 2002). As opposed to bagging methods, 

which create models in parallel to one another, boosting methods create individual models 

serially and place emphasis on misclassified entries. Two specific boosting methods, Adaboost 

and Stochastic Gradient Boosting, will be examined here. 

ADAptive BOOSTing (adaboost) is a boosting method presented in 1997 by Freund and 

Schapire  (Freund & Schapire, 1997). The method is not reliant on the use of decision trees, but 

decision trees are the most widely used base model when applying adaboost. To train an 

adaboost model using decision trees, the procedure begins by training a “decision stump,” a 
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decision tree with only one split. Once the first “stump” has been created, this model is used to 

make predictions on the entire training set. Weights are then assigned to each instance such that 

examples with higher error rates from the existing classifiers in the ensemble are weighted higher 

than those with lower error rates. The next stump is then trained respective to those weights. By 

using this training procedure, the ensemble is trained in such a way that it self-corrects for 

previous errors  (Freund & Schapire, 1997). 

Gradient boosting methods  (Friedman, 2002; Chen & Guestrin, 2016) are another 

popular boosting method. As with adaboost, gradient boosting seeks to develop a set of weak 

learners that improve upon one another in an iterative manner. Unlike adaboost, this is done by 

iteratively reducing the residuals, a term referring to the difference between the predicted and 

actual output values. The residuals are the negative gradient of the mean squared error loss 

function, so by applying this method in training the model is optimizing over the input feature 

topology  (Friedman, 2002). 

Aside from ensemble methods, another area where decision tree technologies have shown 

tremendous performance is in anomaly detection. Anomaly detection is a broad field with 

applicability in many industries and problem spaces, and anomaly detection typically involves 

identifying data instances which vary significantly from expected. These techniques are 

particularly useful in problems such as identifying fraudulent bank transactions (Thudumu, 

Branch, Jin, & Singh, 2020). 

Anomaly detection, as with other ML problems, does not always involve using a single 

model. It is commonplace to use other techniques, such as dimensionality reduction  (Wold, 

Esbensen, & Geladi, 1987; Wold, Esbensen, & Geladi, 1987; McInnes, Healy, & Melville, 2018; 

van der Maaten & Hinton, 2008; Wattenberg, Viégas, & Johnson, 2016) to improve results  
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(Thudumu, Branch, Jin, & Singh, 2020). Decision trees have found application in this field using 

a technique called “isolation forests” (Liu, Ting, & Zhou, 2008; Sahand, Kind, & Brunner, 

2019). In contrast to a traditional decision tree, isolation forests are used by performing random 

splits across one variable at a time until either each point is isolated or a predetermined depth is 

reached. This process is done repeatedly to create an ensemble of isolation trees, hence the term 

“forest.” The theory underlying isolation trees lies on the idea that anomalies are uncommon and 

lie further away – in topological space – from non-anomalous instances  (Sahand, Kind, & 

Brunner, 2019). Using this assumption, the depth at which a new point reaches in a single tree is 

a measure of how anomalous the point is; the smaller the score, the more easily that point is 

separated from the rest of the data. In a forest, all trees’ scores are aggregated together, typically 

through arithmetic mean, to determine a point’s overall anomaly score. For example, a case 

study performed by researchers at RMIT University and CA Labs showed that isolation forests 

were able to effectively identify anomalous and malicious behavior within enterprise information 

systems. By analyzing data in log files and using a version of an isolation forest, the researchers 

were able to develop an anomaly score for different actions users performed. By further cross-

referencing this information with items such as the number of anomalous behaviors for a user in 

each time frame, they were able to successfully identify many malicious events (Sun, Versteeg, 

Boztas, & Rao, 2016).  

A critical review of the available literature identifies an important trend in decision tree 

research: there has been a lack of major improvements in decision tree methodologies in any 

modern capacity. The same training and inference procedures that were made popular by 

Breiman, Friedman, Olshen, and Stone in Classification and Regression Trees  (1984) are still 

the ones widely used today. Even some of the newest innovations such as ensemble methods do 
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not significantly alter these methods for creating splits. These methods are innovative instead 

through the use of multiple models. Isolation forests and other tree-based methods for anomaly 

detection are innovative in how the resulting models determine their splits, but they represent a 

form of unsupervised learning rather than a supervised approach, so their use is limited with 

respect to the scope of this research. 

In short, decision trees are reliable, widely-used, and – with respect to technological 

innovation – stagnant. Little has been done in recent years to improve their underlying 

methodologies, and this is reflected in the ages of the literature reviewed to this point. The 

following section will review some alternative model types and theories that have been 

uncovered through literature review; the section following that will then review an area of 

innovation which this research will investigate heavily: multivariate splits in classification tree 

learning. 

  

Alternative Model Types and Theories 

There are two major theories in ML and statistical learning that diverge from the theories 

decision trees fall under. Namely, these two theories are data modeling and uninterpretable 

models. 

The difference between what has been called the “data modeling culture” and the 

“algorithmic modeling culture” is perhaps best stated in Breiman’s work Statistical Modeling: 

The Two Cultures  (2001). In this work, the author elaborates on how his personal experience as 

an academic and as an industry professional highlighted the difference in theoretical mindsets 

between the more rigid statistical community and the more practical industry practitioners. As 
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the primary creator of the CART algorithm  (Breiman, Friedman, Olshen, & Stone, 1984), 

Breiman’s word on this subject is particularly valuable. 

The first of the factions Breiman mentions in his paper is the “data modeling culture,” 

which is dominated largely by the theoretical statisticians  (Breiman, Statistical Modeling: The 

Two Cultures, 2001). The term “data modeling” used here highlights how proponents of this 

ideology seek to create models which seek to recreate the way the data being modeled is 

generated. This paradigm is best understood when contrasted with the other ideology Breiman 

mentions, the “algorithmic modeling” paradigm, of which the author himself states he belongs 

to. In contrast to data modelers, algorithmic modelers seek to develop mathematically based 

algorithms which can “learn” simply to predict the outputs of the data creation mechanism. The 

key differentiator here is that algorithmic modelers seek to build flexible algorithms, which may 

be interpretable or uninterpretable, that are able to successfully model a wide variety of scenarios 

without necessarily uncovering the data generation methods. 

To illustrate the differences of these two cultures, Breiman uses two process diagrams, 

presented in Figure 2 and Figure 3, which show how the data modeling culture seeks to replicate 

the data creation process and the algorithmic modeling culture seeks to circumvent this 

generation process and generate algorithms which are capable of modeling the outcome. Two 

examples of data modeling algorithms are linear regression (Stanton, 2001) and logistic 

regression (Cuartas, et al., 2021). These algorithms require making strict assumptions about the 

data generation process to be used to their full potential. In contrast, algorithmic modeling 

algorithms such as decision trees and neural networks require no such assumptions. 
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Figure 2. Data Modeling Culture Process Diagram, taken from  (Breiman, Statistical Modeling: 

The Two Cultures, 2001) 

 

 

Figure 3. Algorithmic Modeling Culture Process Diagram, taken from  (Breiman, Statistical 

Modeling: The Two Cultures, 2001) 

 

While both decision trees and ANNs fall under the algorithmic modeling paradigm, they 

vary in a second modeling theory interpretable vs. uninterpretable models. Decision trees do not 

seek to replicate the association function mapping input data to output values, but the resulting 

model is easily understood and can be inspected. In contrast, ANNs create complex linear and 

nonlinear combinations of input variables; this makes it impossible for humans to reasonably 

understand the decision process  (Barredo Arrieta, et al., 2019; Gilpin, et al., 2018; LeCun, 

Bottou, Bengio, & Haffner, 1998). This opaque, complicated decision process is usually 

overparametrized (Allen-Zhu, Li, & Liang, 2020; Du, Zhai, Poczos, & Singh) and can be 

surprisingly susceptible to adversarial attacks, particularly in the cases of computer vision 

(Moosavi-Dezfooli, Fawsi, & Frossard, 2017; Cao, et al., 2022). However, adversarial attacks 

have become increasingly potent in natural language processing (Jia & Liang, 2017) as well as 

others, highlighting the increasing importance of XAI. 
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Taking these theories; data modeling, algorithmic modeling, interpretable modeling, and 

uninterpretable modeling; into consideration, the unique placement of decision trees in this 

theoretical landscape becomes apparent. Decision trees fall under the algorithmic modeling 

paradigm, implying that these technologies are capable of modeling without making as many 

assumptions about the underlying data compared to data modeling algorithms such as linear 

regression. However, decision trees also fall under the paradigm of interpretable models, 

meaning these techniques provide a significant value by allowing the end users to understand the 

decision process for these models. This unique combination of characteristics makes decision 

trees uniquely capable algorithms suited for a wide array of tasks. They are powerful prediction 

algorithms capable of high levels of flexibility, yet they are highly transparent and 

understandable even to users with little experience in ML and AI. 

 

 

 

Figure 4. Simple Multivariate Decision Tree, taken from  (Brodley, Utgoff, & Kibler, 1995). On 

the left is a visual representation of the data. The stepwise function illustrates the decision 
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function learned from a traditional decision tree, illustrated on the right; the dotted line illustrates 

the optimal multivariate decision function, a single linear split which perfectly separates the data.  

 

Gaps in Splitting Theory: Multivariate Splitting Criteria 

While some recent innovations in decision tree methodologies, such as those mentioned 

previously, have proven to be versatile and powerful prediction methods which have been used 

extensively by practitioners, there is a noticeable gap in decision tree splitting principles. 

Specifically, this problem is that traditional decision trees are only capable of making splits 

across one variable at a time, a term referred to as “axis-parallel” splitting. This limited 

capability can not only lead to sub-optimal performance, but it can also lead to overcomplicated 

decision functions in resulting trees which mask the true relationships being learned  (Breiman, 

Friedman, Olshen, & Stone, 1984; Brodley, Utgoff, & Kibler, 1995). Consider Figure 4, which 

displays this phenomenon and highlights how multivariate splits in a tree can greatly reduce the 

number of splits needed and thus improve human understanding of the tree. In the figure, the 

illustration to the left shows the spatial distribution of data on a binary classification task. The 

solid, stepwise function indicates the decision boundary learned from traditional decision tree 

learning procedures. The resulting tree is illustrated to the right. By contrast a single multivariate 

split, represented by the dotted line, perfectly splits the data. This example indicates that a 

multivariate tree, if it could efficiently learn effective multivariate splits, would more concisely 

and accurately model the data. 

Though there have been some decision trees developed which can make multivariate 

splits (Breiman, Friedman, Olshen, & Stone, 1984; Brodley, Utgoff, & Kibler, 1995; Kim & 

Loh, 2001; Fu, Guo, Lin, & Lu, 2010; Murthy, Kasif, & Salzberg, 1994), multivariate decision 
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trees have seen little use outside of academic settings. For this reason, this research identifies 

multivariate decision trees as a gap in the theory behind the use of decision tree technologies for 

ML. Due also to the lack of multivariate trees in production scenarios, this work will only review 

a selection of some of the most innovative and historically relevant multivariate trees which have 

been presented over time. 

In Classification and Regression Trees, the same work in which the CART algorithm was 

presented, the authors present three methods for creating multivariate CART trees in Chapter 5  

(Breiman, Friedman, Olshen, & Stone, 1984). The first of these methods involves creating splits 

of the form found in Equation 3 at every node in the tree, subject to the condition ∑ 𝑎$, = 1. To 

maximize interpretability by removing some variables at each split, the authors propose a 

backwards-deletion algorithm to iteratively set some coefficient values to zero based on a 

variable importance factor they define in the work. While the authors also note that trees 

resulting from using this method will be more difficult to interpret than traditional decision trees, 

it should also be noted that the authors make no attempt for the algorithm to favor univariate 

splits in training using this procedure. By contrast, to make a univariate split using this 

algorithm, all other variables would have to be removed using the authors’ backwards deletion 

algorithm  (Breiman, Friedman, Olshen, & Stone, 1984).  

 

(𝑎,
,

𝑥, ≤ 	𝑐 

Equation 3. Multivariate CART 1. Let 𝑚 be the specific variable under consideration among 𝑀 

total variables, 𝑎, be the coefficient for variable 𝑚, 𝑥, be the mth variable, and 𝑐 be a value that 

ranges across all possible values. 
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, 𝑚$ > 𝑚+ 

Equation 4. Multivariate CART 3. Let 𝑚,𝑚+, and 𝑚$ refer to specific variable numbers, 𝑥, 

refer to the variable corresponding to 𝑚, and 𝑥̅,+,,$ refer to the averaged value of the values 

from 𝑥,+ and 𝑥,$ 

 

 The second multivariate split method presented in Classification and Regression Trees is 

one that makes splits based on Boolean combinations of variables. The authors cite this 

algorithm as uniquely capable in a medical setting, where certain combinations of variables, such 

as patient symptoms, are highly indicative of disease. Once again, the authors present a stepwise 

optimization process to approximate the best combination of variables to use in splitting  

(Breiman, Friedman, Olshen, & Stone, 1984). After further review, this method was not found to 

be used in other literature sources. 

 The third method presented by those same authors utilizes an averaging method to 

perform feature engineering. Additional features are made according to Equation 4. This method 

adds what the authors call an “intuitive appraisal” of variables, in that new features can be split 

in ways that indicate patterns across multiple variables at a time  (Breiman, Friedman, Olshen, & 

Stone, 1984). 

Outside of the work in Classification and Regression Trees, another relatively popular and 

powerful multivariate classification tree algorithm is Oblique Classifier 1, or OC1 for short  

(Murthy, Kasif, & Salzberg, 1994). OC1 creates multivariate splits by attempting to optimize a 

multivariate hyperplane using a combination of deterministic and heuristic strategies. Specifically, 

the algorithm uses a standard optimization procedure on the current hyperplane to find the local 
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minimum of the loss function; once that optimization is complete, the hyperplane is randomly 

perturbed, and optimization follows once more. This procedure enables greater coverage over the 

overall parameter space, ultimately ensuring a better probability of reaching the true optimal 

hyperplane for the current split (Murthy, Kasif, & Salzberg, 1994). Like the methods presented in 

Classification and Regression Trees, however, this decision tree methodology does not place 

emphasis on interpretability, as splits are considered across all variables at each point. While it is 

true the optimization procedure may set the coefficients of individual variables in the hyperplane 

equal to zero, ultimately this is unlikely. 

While the approaches mentioned to this point all involve creating decision-tree-like splits 

across multiple variables, there are also hybridized models which utilize a combination of decision 

tree techniques coupled with non-decision-tree techniques, such as one which utilizes support 

vector machines (SVMs), called the Decision Tree SVM (DTSVM)  (Fu, Guo, Lin, & Lu, 2010). 

To train a DTSVM, first, either a CART or C4.5 decision tree is trained on the input data until 

stoppage criteria are met. Once this training is complete, SVM models are trained on the data at 

the leaf nodes of the resulting tree. The authors cite (Vapnik, 1999) as a primary driver for their 

decision to utilize SVMs in this process, as they note SVMs have a unique capability to solve 

pattern classification problems in a variety of domains  (Fu, Guo, Lin, & Lu, 2010). While the 

decision tree portion of the DTSVM training procedure does not differ from a traditional decision 

tree, the method is noted in this review because of the SVM portion of the methodology, since 

SVMs do perform a form of multivariate “splitting” by creating a multivariate planar boundary 

across the training features  (Cortes & Vapnik, 1995).  Further investigation has revealed additional 

methods which utilize decision trees and SVMs in conjunction with one another across a variety 

of use cases (Sun, Zou, Fu, Chen, & Wang, 2019). 
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There have been multiple methods for creating multivariate decision trees explored here, 

but it is important to note that these methods exist almost solely in academic arenas and have seen 

extremely low usage outside of these circles. Primarily for this reason, multivariate trees have been 

identified as an underexplored area of research in decision tree technologies. By combining this 

knowledge with information and theories from the seminal field of XAI, which will be explored 

in the following section, the research to be conducted in this study will explore this underutilized 

area and develop a new type of classification tree capable of making multivariate splits without 

sacrificing interpretability. 

 

Explainable Artificial Intelligence 

 Unlike decision trees, XAI is a very new field. This newness is due in part because the 

current wave of AI models is marked by the use of increasingly opaque decision models  

(Barredo Arrieta, et al., 2019). ANNs are particularly opaque (Castelvecchi, 2016); for example, 

the now-famous BERT model developed for natural language processing tasks has over 340M 

parameters  (Devlin, Chang, Lee, & Toutanova, 2018) and uses the extremely mathematically 

complicated transformer architecture  (Vaswani, et al., 2017). While model architecture and 

training procedure optimization techniques  (Liu, et al., 2019) have resulted in similar 

performance levels from models with as few as 18M parameters  (Lan, et al., 2019) and other 

research has shown that as much as 90% of network parameters may be removable without 

harming overall performance  (Frankle & Carbin, 2018), interpretability of even the most 

optimized models seems impossible given these methods  (Gunning & Aha, 2019). 

There are several reasons why interpretable models are needed. Firstly, there is the 

simple reason that some problem spaces are not suited for opaque systems. These problem 
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spaces require a full understanding of the decision structure of ML models, something that 

cannot be directly determined when using opaque models  (Gunning & Aha, 2019). Secondly, 

XAI is expected to help with the adoption of AI technologies. In general, humans have been 

found to be hesitant to adopt technologies that are uninterpretable  (Zhu, Liapis, Risi, Bidarra, & 

Youngblood, 2018), so developing explanatory interfaces or building explanations directly into 

the models themselves has been identified as a key to fostering more widespread adoption of 

these technologies  (Barredo Arrieta, et al., 2019). 

A third reason for creating explainable models would be to ensure the impartiality of 

decision making  (Barredo Arrieta, et al., 2019). Unfortunately, biases in data can be learned and 

ingrained in the models that train from that data, as with a hiring algorithm developed by 

Amazon. This model, which has since been decommissioned, was shown to weigh the resumes 

of women negatively due to biases in the training data – resumes from existing, mostly-male, 

employees (Kodiyan, 2019). Explainable models may also be robust against adversarial attacks 

and perturbations  (Barredo Arrieta, et al., 2019). Succinctly, there are many reasons for adopting 

explainable models, ranging from explicit needs for explainability to desires to gain buy-in from 

stakeholders. 

As a result of current modeling paradigms and industry needs, the Defense Advanced 

Research Projects Agency (DARPA) almost singlehandedly brought together all these needs and 

created what is now called XAI. DARPA identified a need for a “suite of technologies” which 

produce more explainable models and enable humans to easily understand, trust, and manage AI 

systems  (Gunning & Aha, 2019) . As stated before, XAI is a new field, and as such the 

terminology has not fully converged. The next section will provide an overview of important 

terminology definitions used in this research. 
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Current Research and Theories 

In this section, a deeper review of the theories and methods within the field of XAI is 

examined, with a focus on understanding current theories and technologies used for 

explainability. 

One of the rising theories in XAI is the idea of audience at the center of importance for 

the explainability of a model  (Barredo Arrieta, et al., 2019). Put simply, this theory states that 

the reason for creating explanations and the level of explanation required for a model are tied to 

the consumers of the model. Figure 5 shows the importance of audience in XAI, as it highlights 

both a wide selection of groups who utilize ML models and why each of those groups cares 

about interpretability and explainability in those models. 

 

 

Figure 5. Showing the importance of audience in XAI. Taken from  (Barredo Arrieta, et al., 

2019). 

 

This theory of audience at the center of XAI may appear to be a way to prevaricate the 

issue of developing a complete, unified set of requirements for explainability and interpretability 
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in AI. However, as AI’s prominence grows and becomes more widespread, it reaches an ever-

increasing number of people. These people have a variety of backgrounds – and thus 

requirements for explainability. Referencing Figure 5 once more, the diversity of audience 

backgrounds and requirements is highlighted well in that illustration, with the reasons for 

explainability ranging from understanding the implications of using the model to truly 

understanding the relationships in the data that the model is exploiting. 

Further examination of the needs of specific stakeholders and AI users has revealed a 

further set of specific underlying reasons why explainability are required. These reasons are 

Trustworthiness, Causality, Transferability, Informativeness, Confidence, Fairness, 

Accessibility, Interactivity, and Privacy Awareness. The following paragraphs highlight each of 

these needs. 

Establishing trustworthiness is perhaps the primary goal of XAI  (Ribeiro, Singh, & 

Guestrin, 2016). However, trustworthiness of a model is often very hard to quantify, or even 

define. Clearly, an explainable model would be more trustworthy than one that achieves the same 

results without any explanations, but a trustworthy model may not require itself to be explainable  

(Barredo Arrieta, et al., 2019). Perhaps then a model’s trustworthiness is linked to its reliability 

in the eyes of the audience; one is more likely to deem a model trustworthy if one understands 

which factors influence when the model is correct and when the model fails. This definition is 

clearly linked to explainability, as an explanation of a model’s choices provides the audience 

with information of the model’s inner decision process. However, what the audience is truly 

looking for is an understanding of the model’s behaviors in terms of output, indicating more on 

the lines of reliability than explainability. An analogous situation would be a user of an 

automobile developing an understanding of how the vehicle performs in different weather 
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conditions. Developing operator trust in this situation does not rely on the user having an 

intimate understanding of the technologies built into the vehicle, but rather experience using the 

vehicle and experimenting with its capabilities. 

Identifying causality and potentially causal relationships is another goal of XAI. Finding 

relationships among variable which may be indicative of universal truths, rather than 

correlational relationships, is particularly present in fields such as medicine. While current ML 

technologies are only capable of finding correlational relationships between variables, and there 

is the popular adage that correlation does not imply causation, another viewpoint is that 

“causation involves correlation”  (Barredo Arrieta, et al., 2019). Furthermore, research has been 

done to identify causal relationships in statistics (Pearl, 2022; Liang, 2016) 

The third identified reason for XAI, transferability, relates to the applicability of a model 

on unseen data. Transferability is like trustworthiness in the regard that explainability helps the 

audience understand when a model can be transferable, but transferability does not necessarily 

require explainability. For example, transferability is tested when using a standard train-validate-

test approach in building a ML model  (Vapnik, 1999; James, Witten, Hastie, & Tibshirani, 

2013). However, not understanding how a model makes its decisions can lead to incorrect 

assumptions and undesired results when applying a model to real inference scenarios (Kodiyan, 

2019). 

The fourth reason for adopting XAI techniques, informativeness, refers simply to the idea 

that an explainable model should reveal some information about the problem  (Barredo Arrieta, 

et al., 2019). This reason is perhaps the simplest of the reasons addressed here, but it is an 

important one, particularly when one considers that ML models address simplified versions of 

the problems they are employed to solve. 



38 
 

 

Confidence, in terms of a reason for requiring XAI, refers not necessarily to how 

confident the human is in the model, but how likely the model believes its prediction is true. A 

simple approach to showing a model’s confidence in classification is to output the predicted 

probabilities of each class, rather than only a single number. Clearly, using the definitions 

described previously, this is a form of model explanation. 

Another reason for XAI, Fairness, refers mainly to building an understanding of the 

biases that the model itself possesses (Chouldechova, 2017). Fairness can be particularly 

important when the AI models affect humans and their lives. By building explainability into 

these models, AI practitioners can be surer that what they are doing does not negatively affect 

people. 

Accessibility is another reason for employing explainability in AI. Accessibility in this 

context refers to allowing more of the audience, such as end users, to become more involved in 

the modeling process and even developing models themselves (Chander, Srinivasan, Chelian, 

Wang, & Uchino, 2018). Clearly, providing users with more-explainable models to use in this 

context would make it easier for these users to understand and trust the outputs these models 

provide. 

Interactivity is another factor influencing XAI. This one is again tied mostly to the end 

users of the algorithm and giving them the freedom to look deeper into a model and possibly 

alter it (Langley, Meadows, Sridharan, & Choi, 2017). 

The last reason for employing XAI, privacy awareness, is rarely considered in the 

literature  (Barredo Arrieta, et al., 2019). As seen previously, ML models may learn undesired 

biases that propagate to decision systems (Kodiyan, 2019) and can be considered a privacy 

breach. However, privacy breaches can come from the other direction as well, such as if a third 
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party is able to discover the relationships the model learned through explainability techniques. 

This second method could potentially put the privacy of individuals whose data was used to 

build the model at risk. 

An interesting trend in XAI is the focus on post-hoc explainability techniques. These are 

techniques which add explainability to opaque models. Some of these techniques are universal 

and can be applied to any model type, while others are model specific  (Barredo Arrieta, et al., 

2019). The review presented here gives a brief overview of some of the most popular techniques. 

One of the most famous techniques for post-hoc explainability is LIME, or Local 

Interpretable Model-Agnostic Explanations  (Ribeiro, Singh, & Guestrin, 2016). LIME acts by 

randomly perturbing the inputs to the model and observing how the outputs change. The method 

then uses this information to develop linear approximations to the model’s decision function in 

the region surrounding the instance under question. It is important to note here that among all 

literature reviewed, LIME was mentioned quite often and as one of the first algorithms presented 

in each work – a testament to its importance and its ubiquity in the field of XAI. 

Though model agnostic techniques such as LIME exist, many XAI techniques and 

technologies are model-specific or not wholly generalized. The following paragraphs will 

explore some techniques which have been developed for specific use cases and model types. 

This discussion will begin with previously explored techniques such as ensemble methods and 

will then explore other ML models such as different deep learning architectures. 

As explored previously, ensemble methods – particularly tree-based ensemble methods – 

utilize multiple “weak” models in aggregate to perform prediction on a new data instance. While 

this technique has been shown to improve predictive capabilities, the added complexity that 

prediction from tens or hundreds of individual models adds makes true interpretability difficult. 
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Due to the widespread use of and impressive predictive capabilities of tree ensembles, a variety 

of techniques have been developed to improve their explainability and make them more suitable 

for some of the industries and problem spaces previously discussed  (Barredo Arrieta, et al., 

2019). 

One such technique for imposing explainability onto ensemble techniques has been to 

train a single, simpler model to make the same predictions as the ensemble. One such method 

involves the creation of a single, simple model taken using sample of data taken from the 

training data along with the predictions from a trained ensemble method. The simple model, 

typically a single decision tree, is then trained on that sample and those predictions with hopes to 

mimic the overall decision structure of the ensemble (Rosenfeld & Richardson, 2019). 

Though there are some methods, such as the one mentioned in the preceding paragraph, 

which seek to simulate the ensemble’s decision process through the use of smaller, more 

explainable models, many explanation techniques for ensembles rely on feature relevance and 

feature importance methods. Breiman was among the first to explore the use of these techniques 

by utilizing a mean decrease in accuracy (MDA) measure which is determined by randomly 

permuting a single variable (Breiman, Classification and regression trees, 2017). A following 

study showed that this technique was accurate when applied to real-world problems (Tolomei, 

Silvestri, Haines, & Lalmas, 2017). 

While there are methods for introducing higher levels of explainability into ensemble 

methods, much of the detected literature focuses on bagging ensembles as opposed to boosting 

ones, and little has been published in recent years in this area in general  (Barredo Arrieta, et al., 

2019). It appears instead that much of the literature since the creation of the term “XAI” has 
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instead focused on explainability techniques applied to deep learning, an area which will be 

discussed in the following paragraphs. 

As mentioned previously, ANNs are some of the most powerful ML algorithms that exist 

today, but that predictive power is offset heavily by their lack of interpretability and 

explainability. It is perhaps understandable then why much of the field of XAI has been devoted 

to adding explanatory powers to these models. The review conducted here provides an overview 

of explanation techniques to two of the most widely used neural network architectures: the multi-

layer perceptron and the convolutional neural network. 

The multi-layer perceptron is perhaps the prototypical neural network architecture. This 

architecture includes stacking layers of artificial neurons which perform linear and nonlinear 

transformations on their respective inputs to solve the requested task. This chain of 

transformations is what makes interpretation difficult; the relationships learned by the model are 

often so complex that no human-understandable information can be retrieved from the resulting 

model. 

In response to the growing need of explainability, several techniques have been 

developed to improve end user understanding of multi-layer perceptrons. One such technique is 

the DeepRED algorithm, which uses decision trees and rule extraction techniques to build a 

simplification of the ANN’s decision structure (Zilke, Mencia, & Janssen, 2016). Another model 

simplification technique is presented in (Che, Purushotham, Khemani, & Liu, 2016), where the 

authors propose a method for creating an interpretable model which mimics the neural network’s 

decision process using gradient boosted trees. 

While the techniques mentioned in the previous paragraph add explainability to multi-

layered perceptron by using another, simpler model, oftentimes with deeper – and thus more 
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complicated – models, feature importance techniques are used. One such technique is presented 

in  (Montavon, Lapuschkin, Binder, Samek, & Muller, 2017), in which the authors identify a 

procedure to decompose a network by treating each neuron as an individual object. This results 

in a deep Taylor decomposition for the network and a greater understanding of the relevance of 

each feature  (Montavon, Lapuschkin, Binder, Samek, & Muller, 2017). Another method for 

performing feature relevance is DeepLIFT, which measures the differences between an artificial 

neuron’s activation and a reference activation level and uses that difference in calculations to 

determine the relevance score (Shrikumar, Greenside, Shcherbina, & Kundaje, 2016). However, 

it should be noted that multiple studies have shown that many of the feature relevance techniques 

used are not theoretically rigorous and can result in explanations which are not wholly correct 

(Sundararajan, Taly, & Yan, 2017; Kindermans, et al., 2017). 

Convolutional Neural Networks (CNNs), as opposed to other types of ANNs, are perhaps 

easier to apply explainability techniques to because they are used commonly with computer 

vision tasks. The actual relationships these kinds of networks learn is extremely complex; 

multiple convolutional layers are stacked upon one another to learn higher level features at each 

step. For example, for a facial recognition task, the first layer may serve as edge detection. 

Subsequent layers will then be able to use this information to identify facial features such as the 

nose, lips, or eyes. Due to the use of CNNs on primarily visual tasks, many explanation 

techniques leverage the visual nature of these problems to make human-centric explanations 

easier  (Barredo Arrieta, et al., 2019). 

Though previously discussed, LIME  (Ribeiro, Singh, & Guestrin, 2016) is a technique 

which has shown to be particularly effective technique for explaining CNNs for computer vision 

purposes. By perturbing input pixels and recording how the resulting class probability 
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predictions change, LIME identifies regions of the image which contribute highly toward the 

predictions the model makes. These regions are then returned to the user as a form of 

explanation. 

Separate from LIME, many CNN explainability techniques involve making alterations to 

the network architecture. One such method was presented in (Zhou, Khosla, Lapedriza, Oliva, & 

Torralba, 2016), in which the authors add an average pooling layer between the network regions 

containing CNN layers and fully connected layers. This average pooling layer is used to make 

predictions on the image, whereby identifying and localizing areas of the input image which 

contribute highly toward the predicted values. Another similar method is Gradient-weighted 

Class Activation Mapping (Grad-CAM) (Selvaraju, et al., 2017). For this method, the authors use 

the gradients of the target values with respect to the final convolutional layer to supply the values 

for the heatmap used to identify regions of the input image which contribute highly toward the 

prediction value. Interestingly, the authors show in their work that Grad-CAM produces similar 

results to other explainability and visualization methods for CNNs, such as occlusion sensitivity, 

while also simultaneously being much cheaper to compute  (Selvaraju, et al., 2017). 

In summary, current XAI theories and ideas exist on a wide spectrum ranging from the 

theoretical aspects of what explainability is to how to apply explanation techniques toward 

various opaque model types. Still a relatively new field, XAI is reaping the benefits of the 

pervasiveness of DL and other uninterpretable model types in today’s AI landscape. However, as 

will be discussed in the following section, XAI has largely existed with a one-directional focus. 

That is, the focus of XAI research has largely been to impose explainability onto uninterpretable 

models. This research examines another, virtually unexplored area of XAI: increasing 
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performance of already-explainable ML model types without sacrificing high levels of 

interpretability. 

 

Gaps in Theory and Applicability toward this Study  

One notable gap in the field of XAI involves improving inherently interpretable ML 

techniques and technologies. None of the previous methods described are designed to give 

greater predictive power to interpretable methods. Instead, either interpretable models are built to 

help explain more complicated ones or entirely different techniques are used to impose some 

explainability on complex models such as ensembles or ANNs. 

That is not to say that this area of XAI has been completely abandoned, however. There 

are a few notable algorithms which have been created more recently that focus on bringing more 

power to interpretable model types. Among these are Additive Trees (Luna, et al., 2019), and 

Explainable Boosting Machines (Nori, Jenkins, Koch, & Caruana, 2019), the latter of which are 

based on the GA2M algorithm (Lou, Caruana, Hooker, & Gehrke, 2013). 

Additive trees, as the name implies, do utilize tree-based learning procedures to create a 

powerful interpretable model. They do this by applying gradient boosting techniques at each of 

the nodes in the tree during training across all the training data. The result is a decision tree 

system which is more powerful than traditional CART while also retaining interpretability 

(Luna, et al., 2019). However, this algorithm will not be tested in this study because these 

models still solely perform univariate splits. 

Explainable Boosting Machines, comparatively, use boosting to identify a single decision 

function for the entire dataset which has a strikingly similar appearance to a linear regression 

decision function (Lou, Caruana, Hooker, & Gehrke, 2013). Furthermore, interaction terms of up 
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to two terms are also included in this algorithm. While this algorithm does use some of the 

learning methods of decision trees in training, the decision function learned is very different 

from a traditional decision tree in that it is a single function instead of a stepwise one. For this 

reason, this algorithm will not be compared in this study. 

There are a few models, typically ones that fall under the category of transparent models, 

which require very little – often no more than visualization – to be understood by a wide variety 

of audiences  (Barredo Arrieta, et al., 2019). While there are some mathematical concepts which 

the intended audience should understand at a basic level for all model types, particularly with 

logistic regression (Mood, 2010), in general models such as linear regression, logistic regression, 

decision trees, and K Nearest Neighbors (KNN) are among those which are easiest to understand. 

However, no studies were found which involved adding improved predictive capabilities to any 

of these model types. 

It is at this region of XAI theory that this research is to take place. As noted in the 

previous review of decision tree literature, an area which has experienced minimal research in 

decision tree theory is the addition of multivariate splits. Similarly, a review of XAI literature 

reveals that no significant progress has been made toward developing more powerful 

interpretable algorithms. Instead of continuing along with current trends of making opaque 

models more explainable, this research study will examine the use of a new type of multivariate 

classification tree, built with explainability in mind, to address issues in both sub-fields in AI. 

 

Chapter Summary 

In this chapter, literature relevant to the study to be conducted was analyzed. This review 

was divided into two sections: decision tree theory and XAI theory. In the first section, a history 
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of decision tree methodologies and technologies was presented, followed by an overview of 

more recent innovations in these technologies, and ending with a narrative concerning the lack of 

innovation in the area of multivariate decision trees was made. For the analysis in XAI theory, a 

brief history and overview of the field was presented, followed by an analysis of recent 

innovations and how the theory has adapted over time as it has become more mature. Lastly, a 

gap in XAI theory, specifically the lack of research into developing more powerful inherently 

explainable algorithms, is examined. 

The research to be conducted in this work places itself at the intersection of these two 

fields, namely in the areas identified as gaps in the existing theories. This work seeks to develop 

a more powerful, inherently explainable decision tree ML algorithm by utilizing multivariate 

splits in training. By designing, implementing, and testing this new algorithm, a step forward in 

both decision tree and XAI theory can be made. 
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CHAPTER 3: METHOD 

As shown in previous chapters1, there has been a significant rise in need for 

explainability in AI. However, given the focus of developing post-hoc explainability techniques 

aimed largely at explaining neural networks, there is a remarkable lack of research into 

developing more powerful inherently explainable models, such as decision trees. After 

examining decision tree literature, it has become apparent that there has been little innovation in 

this field for years. 

The primary goal of this research is to examine the intersection between XAI and 

decision tree theories, as this area represents a unique opportunity to develop more-powerful, 

inherently explainable algorithms. By developing and testing a new form of multivariate 

classification tree with explainability as a main design consideration, it is hoped that this 

research will result in the development of a new technology which can be immediately deployed 

and used in ML situations requiring high levels of interpretability. This technology, named the 

Linear Regression Classification Tree (LRCT), utilizes a technique for developing multivariate 

linear and polynomial splits in classification tree training – a capability not seen in any detected 

literature. An in-depth explanation of this splitting procedure is contained in the following 

section, followed by an elucidation of the experiments to be conducted to answer the research 

questions presented in Chapter 1 of this work. 

 

 
 

1 Ibid. p. 36-39 
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LRCT Splitting Procedure 

As indicated by its name, the LRCT splitting procedure utilizes linear regression as a 

means for identifying multivariate splits. This is done by using one of the feature variables as a 

dependent variable and fitting the regression model to the best split in that dependent variable 

across a selection of other variables as they are broken into a grid-like structure. 

 

The general splitting procedure is defined by the following steps: 

 

1. Let n, j, and p, determined by the user, be positive integers referring to the number of bins 

per variable, the number of variables to be used to create each linear regression model, and 

the maximum power to raise each of the j variables to, respectively. 

2. Find the best single-variable split. 

3. For every combination of 𝑗 + 1 variables, do the following: 

a. Let one of the variables, defined further as 𝑥!, be used as an independent variable. 

b. Across each of the other j variables, determine 𝑚. and 𝑀., which correspond to the 

minimum and maximum values for that variable for which there are all classes 

present, respectively. 

c. Across the j variables, divide each of those variables into 𝑛 evenly sized bins ranging 

from 𝑚. to 𝑀., creating a j-dimensional grid. 

d. For each of the grid boxes identified in the step above, calculate the optimal split 

across 𝑥' for the data in that grid box. 

e. Use the value found in the previous step as a dependent variable value located at the 

midpoint of the individual grid box. 
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f. Using the points created through this process, fit a linear regression model with target 

values in 𝑥' and independent values across grid point values for the other j variables, 

up to and including power p. 

g. Use the fit linear model to create a new multivariate feature by utilizing the 

coefficients from the linear model and subtracting 𝑥' 

h. Determine the best split across this new variable. 

4. Repeat steps 3(a)-3(g) on every combination of variables, recording the best split, measured 

by greatest decrease in weighted impurity score. 

5. Choose the best split between the univariate split and the multivariate split. 

 

There were several design considerations when creating the LRCT splitting procedure. 

First, the procedure must result in effective multivariate splits. For this research to be successful, 

the LRCT training procedure must be capable of identifying multivariate splits which provide 

greater informational value than univariate ones. It is expected that the binning technique 

described above will assist in efficiently identifying multivariate splits by optimizing the split’s 

hyperplane surface. 

A second design consideration was the level of explainability in the learned splits. Unlike 

traditional decision trees which have simple-to-understand univariate splits, multivariate splits 

can be much more difficult for a human to understand. As explainability is another of the 

primary concerns for this research, heavy consideration was given to developing a splitting 

procedure which could be customized to the user’s needs. This condition was met by allowing 

the user to choose both the number of variables to use in creating multivariate splits and the 

highest polynomial degree to make these splits at. Splits with fewer variables are easier to 
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understand; this is especially true when only two or three variables are involved, as then the split 

can be visualized. By allowing the user to control this hyperparameter, the concept of audience 

in XAI is utilized in such a way that allows for different levels of explainability for different 

scenarios. 

The third design concept for the LRCT training procedure, which is related to the concept 

of explainability, is simplicity. If a simpler, univariate split divides the data in a way that results 

in equal or better performance than multivariate splits, it is logical that the univariate split be 

preferred. For this reason, the LRCT procedure includes finding the optimal univariate split as 

well as multivariate. This also effectively means that an LRCT tree can result in only univariate 

splits, and multivariate splits are only used if they provide performance benefits over their 

traditional counterpart. 

Now that the LRCT algorithm has been described, the experimental design of this 

research will be explored fully. This research will contain a mixture of experiments on artificial 

and collected data. The focus on artificial data experiments will be to highlight the exact 

capabilities of the LRCT training procedure, while the experiments on collected data will provide 

evidence for the procedure’s ability to create practically useful decision trees. 

 

Research Method and Design  

This research study is designed to focus on empirical results, rather than focusing solely 

on the mathematical theory behind the modeling procedures. Following this fundamental basis, 

this study will include two sets of experiments. The first of these will focus on understanding 

how the presented LRCT algorithm performs on artificial data. The data in these experiments 

will be designed to test specific capabilities, particularly ones which the algorithm is specifically 
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designed to be well-suited for. Additionally, in these experiments, a traditional decision tree 

splitting procedure and an OC1  (Murthy, Kasif, & Salzberg, 1994) splitting procedure will be 

used as control cases to show how LRCT’s performance compares to other decision tree models. 

The first experiment in this set will test the simplest possible scenario that LRCT is 

designed for: performing a single linear split across two feature variables. In this experiment, a 

dataset will be created with two input features and a binary classification task. A single linear 

split across these two features will be devised such that the classes are perfectly divided along 

that boundary. For the LRCT and traditional decision tree splitting procedures, the resulting 

models will be trained to perform a single split. The OC1 tree will be trained as in the original 

paper. The performance of each of the models will be investigated in detail. 

The second experiment will extend the first experiment by identifying whether the LRCT 

algorithm can efficiently perform automatic feature selection. To test this, three additional 

features with no informational value will be added to the dataset from the previous experiment. If 

the LRCT algorithm behaves as expected, the split this model learns will be identical to the split 

learned in the previous experiment. Once again, the two control models under consideration will 

also be trained on the same data, and the performance of each of the models will be analyzed. 

The third and fourth experiments conducted will match closely to the previous two, but 

the split across variables will be a polynomial one, rather than a linear split. The ability for 

LRCT to make polynomial splits across variables is one of its defining features, as it is 

something that has been unprecedented in any of the detected literature. The performance 

analysis in these experiments relative to each of the three models used will be the same as the 

previous experiments. 
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Each of the experiments conducted to this point in the research will have tested some of 

the core capabilities of the LRCT algorithm, but the training and testing data in these 

experiments is simple in that the expected splits will perfectly classify the data. This 

phenomenon is rarely – if ever – the norm in “real world” ML modeling scenarios. To further 

test the LRCT procedure and provide a better estimate of how the procedure performs on less 

clean data, the previous experiments will be replicated with added noise in the form of data 

instances of the unexpected class on either side of the optimal decision boundary. These 

experiments will see noise levels ranging from 10% to 30% in increments of 10%, where a noise 

level of 20% indicates that 20% of the data will belong to the “incorrect” class respective of the 

decision boundary. These noise values will only be present in the training data; test data will 

remain unaltered to measure performance equally among the original experiments and the altered 

experiments with noise present. The hypothesis is that so long as the general data structure is 

upheld, LRCT will be robust to this kind of noise. 

The last set of experiments on artificial data will test LRCT’s abilities on complicated 

learning tasks. The first of these experiments will involve a binary classification task with the 

data distributed in a “checkerboard” configuration. This data distribution will test the 

procedure’s ability to identify a series of splits which result in optimal, or a close approximation 

of optimal, classification. Following this experiment, experiments with generalized, 

automatically created data structures will be conducted. This last set of experiments, where data 

generation is not done by hand, are expected to yield the most accurate results short of testing on 

true, “real-world” data. These experiments will be conducted on a range of model types that 

extends beyond the additional two model types mentioned previously; these experiments will 
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include KNN, logistic regression, and feedforward neural networks as well as LRCT, OC1, and a 

traditional decision tree. 

After the previous experiments have been completed, the final set of experiments will be 

conducted on “real world,” collected datasets. These experiments are essential to this study, as 

they give the best indication as to the practical predictive capabilities of the LRCT training 

procedure in deployed, production scenarios. These experiments are designed to be the most 

complete and rigorous experiments conducted on LRCT. By analyzing the results of these 

experiments, a detailed understanding of the predictive capabilities and limitations of LRCT will 

be formed. 

The data for these experiments will be taken from common, well-known sources. The 

first dataset will be the ubiquitous iris dataset (Fisher, 1936; Anderson, 1935), a dataset 

containing 50 samples of four feature variables for each of three different species of iris flowers. 

The goal in this analysis is to identify the species of flower each sample belongs to, given the 

information collected. Further evaluation and explanation of the dataset will be done in the 

following chapter. 

The second dataset used in this set of experiments will be a medical dataset with the 

prediction task to identify whether each sample corresponds to a patient with breast cancer (Dua 

& Graff, 2017). Compared to the other data used in these experiments, this dataset contains a far 

greater number of features (30), indicating that this learning problem will identify whether LRCT 

is able to accurately and efficiently perform automatic feature engineering and selection as 

designed. Further evaluation and explanation of the dataset will be done in the following chapter. 

The final dataset to be used in these experiments will be the well-known wine 

classification dataset (Dua & Graff, 2017). This dataset, which contains three classes of wines to 
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be predicted and 13 predictive features about each wine, will further the empirical knowledge of 

LRCT’s predictive skills gained through these experiments. Further evaluation and explanation 

of the dataset will be done in the following chapter. 

 

Model Performance and Evaluation Metrics 

Model performance and evaluation is a critical piece for this research study. It is 

imperative that a comprehensive set of performance metrics be collected for each model in each 

experiment. By properly collecting performance metrics, conclusions made from this research 

can be validated with minimal disputation; the following list highlights information related to 

how each model will be trained and evaluated: 

 

1. For each experiment, the total dataset will be divided randomly into three sets. The 

first set, comprised of 50% of the total data, will be used in training the model. The 

second set, comprised of 20% of the total data, will be used as a validation set. The 

remaining 30% of the data will be used as a test set to estimate performance on 

unseen data. 

2. For each model, overall accuracy, confusion matrices, and per-class and weighted 

average F1 scores will be presented. These numbers will reflect performance on test 

data only.  

 

By adhering to the data splitting characteristics defined above, it is ensured that all 

models in each experiment is trained equally. By training on the training set, selecting the most 

performant model using the validation set, and measuring overall performance using the hold-out 
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test set, each model is held to the same standards without being purposefully trained to perform 

well on the test set. By utilizing this method, it is ensured that the metrics recorded present an 

accurate depiction of the generalized performance of the resulting model, rather than overfitting. 

Furthermore, each of the metrics presented in the experiments represent specific 

generalizations about how the models perform. Accuracy metrics present an overview of model 

performance, but the amount of information presented through accuracy alone is incomplete. By 

providing confusion matrices and F1 scores as well, a greater picture of model performance can 

be deduced. Specifically, confusion matrices help show how predictions in binary or multiclass 

classification problems can be broken down by class. F1 scores help identify the balance 

between precision and recall for a model. In addition to these metrics, presenting an AUC score 

in the binary classification tasks identifies how certain each model is when predicting outcomes 

from new data. 

 

Research Design Effectiveness 

By designing the experiments conducted for this dissertation study in the way described 

above, it is expected that a comprehensive and thorough study of the LRCT algorithm will result. 

The initial experimentation on contrived, artificial data will provide the foundational information 

for the study by showcasing how LRCT learns specific kinds of decision boundaries relative to 

existing models. The second set of experiments on collected data will provide further 

information into LRCT’s algorithmic viability by measuring how the algorithm performs a 

variety of different tasks which simulate production scenarios. 

One shortcoming to this experimental design is the focus on empirical results, rather than 

theoretical ones. Due to this focus, it is possible that the results of the experiments conducted 
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through this research could misrepresent actual performance. However, by conducting multiple 

artificial data experiments with varying relationships and by selecting a wide range of collected 

datasets to use in this study, it is unlikely that the results of these experiments will be 

unrepresentative. This research design is also chosen specifically because of the focus on utility 

of the algorithm presented, as it falls under the algorithmic modeling paradigm  (Breiman, 

Statistical Modeling: The Two Cultures, 2001).  

 

Chapter Summary 

In this chapter, an overview of the LRCT algorithm and the experiments concerning its 

performance was presented. By dividing training data into a grid-like structure on a per-variable 

basis at training time, the LRCT algorithm creates a simplification of the optimal multivariate 

decision boundary across sets of input features. The algorithm then utilizes linear regression 

techniques to approximate this true decision boundary, which is hypothesized to provide 

improved prediction capabilities without hindering model transparency. 

Testing will include experimentation using both artificial and collected datasets. By 

creating a variety of situations in the artificial data experiments, the performance of LRCT 

compared to a selection of other model types can be carefully measured across a variety of 

relationships within the input data. Furthermore, by utilizing collected, “real-world” data in 

multiple experiments as well, a greater understanding can be developed with respect to LRCT’s 

performance in deployed scenarios. 
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CHAPTER 4: RESULTS 

This chapter presents the results of the experiments conducted as part of this study and as 

outlined in the previous chapter. For each of the experiments conducted, an overview of the data 

will first be presented. After the data has been presented, each of the models used in the 

experiment and any hyperparameters specific to each model will be discussed. Finally, a 

presentation of the results of each model in the experiment will be presented. Conclusions and 

discussions related to the experimental results will be withheld until the following chapter. 

 

Experiment 1: Two Variables, Single Linear Split 

The first experiment conducted in this study focused on the simplest possible scenario for 

which the LRCT model was developed to outperform traditional decision tree models: a single 

linear split across two variables which perfectly classifies a binary classification task. For this 

task, one thousand instances of two features were randomly selected across the uniform 

distribution in the interval (0,1). These features were then expanded via multiplication such that 

the first variable could have a maximum value of 14 and the second variable could have a 

maximum value of 8. The binary target was then created via the decision function in Equation 5, 

where i refers to each individual instance and 𝑋/ and 𝑋+ correspond to the first and second 

features, respectively. 

 

𝑌' = A1	𝑖𝑓𝑋+,' > 10 − 𝑋/,'
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 5. Experiment 1 Decision Function. Let 𝑖 refer to an individual instance, 𝑋/ and 𝑋+ 

refer to the first and second feature variables, respectively, and 𝑌' refer to the target class for the 

instance under consideration. 
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After data generation, 50% of the data was reserved for training, 20% of the data was 

reserved for validation, and the remaining 30% of the data was used as test data. Visualizing the 

training data yielded in Figure 6, which clearly shows the underlying relationship between the 

two classes. 

 

 

Figure 6. Experiment 1 Training Data. Red dots represent instances belonging to class 0, and 

grey dots represent instances belonging to class 1. 

 

For this experiment, due to the known underlying structure of the data and the desire to 

test LRCT’s ability to learn such relationships succinctly, both the LRCT model and the standard 

decision tree model were trained only to perform a single split. Furthermore, LRCT was only 

allowed to learn linear decision boundaries; the OC1 tree was allowed to train as in the original 

paper. The results of this experiment are present in Table 1, and the decision boundary learned 

by the LRCT tree is presented in Figure 7. 
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Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

LRCT 0.997 126 1 173 0 1.0 1.0 1.0 

CART 0.823 122 49 125 4 0.82 0.83 0.82 

OC1 1.0 126 0 174 0 1.0 1.0 1.0 

Table 1. Experiment 1 Results 

 

Figure 7. Experiment 1 LRCT Learned Decision Boundary. Red dots refer to instances belonging 

to class 0, and grey dots refer to instances belonging to class 1. The black line indicates the 

decision boundary learned by the LRCT tree. 

 

Clearly, both LRCT and OC1 drastically outperform the CART decision tree with a 

single linear split. However, it is also clear that the decision boundary learned by the LRCT 

algorithm very closely matches the true function defined in Equation 5. This result gives an 

initial indication that the LRCT, under extremely simple circumstances, performs as expected 

and can identify multidimensional splits efficiently. 
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Experiment 2: Five Variables, Single Linear Split 

The second experiment conducted in this study expended the test conducted in the first 

experiment by adding three additional variables to the dataset, each with no informational value. 

Once again, one thousand data instances were created, each now with five feature variables. The 

first two features once again were expanded to exist within the (0, 14) and (0, 8), respectively, 

while the third through fifth variables were expanded to belong to the ranges (-6, 0), (0, 3), and (-

5, 0), respectively. The true decision function was determined again by Equation 5. The same 

splitting percentages for training, validation, and testing data as previously were observed. The 

training data for this experiment can be viewed in Figure 8; the careful observer will notice a 

slight difference between the exact location of the points in this figure and in Figure 6. This 

difference is due to the random data generation function used. 

 

 

Figure 8. Experiment 2 Training Data. Red dots represent instances belonging to class 0, and 

grey dots represent instances belonging to class 1. 
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Again, due to the known underlying structure of the data, for this experiment the LRCT 

model and the traditional classification tree model were allowed only to train to a depth of one. 

The LRCT tree was allowed to only create linear splits across two variables, as before. OC1 was 

trained as in the original paper. The results of the experiment are presented in Table 2, and the 

decision boundary learned by the LRCT tree is presented in Table 2. 

 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

LRCT 0.98 125 6 169 0 0.98 0.98 0.98 

CART 0.823 111 39 136 14 0.81 0.84 0.82 

OC1 0.876 109 21 154 16 0.85 0.89 0.88 

Table 2. Experiment 2 Results 

 

Figure 9. Experiment 2 LRCT Learned Decision Boundary. Red dots correspond to instances 

belonging to class 0, and grey dots correspond to instances belonging to class 1. The black line 

indicates the decision boundary learned by the LRCT tree. 
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The results of this experiment highlight a unique capability of the LRCT algorithm: the 

automatic feature selection capabilities it has. By searching through pairs of input variables 

instead of all input variables at once, the LRCT algorithm was able to efficiently identify an 

extremely similar decision boundary as in Experiment 1. Note the small decline in performance 

in this experiment as opposed to the prior one is due to the nature of random data generation – 

there were simply more data points generated near the decision boundary for this experiment 

than in the previous one. 

Compared to the LRCT algorithm, OC1 sees a marked decrease in performance 

compared to the previous experiment. This decrease in performance is likely due to OC1’s 

inherent use of all variables at each split instead of selecting a subset of variables to perform 

splitting on. CART has virtually the same performance in this experiment when compared to the 

previous one due to its univariate splitting characteristic.  

 

Experiment 3: Two Variables, Single Polynomial Split 

The third experiment run in this study follows the logic of the first experiment, but this 

time instead of a linear split across two variables, the optimal decision boundary is a polynomial 

split across two variables. For this experiment, five thousand instances of two variables were 

randomly created using a uniform distribution in the interval (0, 1). These features were then 

expanded via multiplication so that the first feature’s interval was changed to (0, 5) and the 

second feature’s interval was changed to (0, 20). The binary target was then created via the 

decision function in Equation 6, where i refers to each individual instance and 𝑋/ and 𝑋+ 

correspond to the first and second features, respectively. Once again, 50% of the data was 
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reserved for training data, 20% was reserved for validation, and the final 30% was reserved for 

testing. A visualization of the training data for this experiment can be found in Figure 10. 

 

𝑌' = J1	𝑖𝑓	𝑋+,' > 2 + 𝑋/,' − 𝑋/,'$ +
𝑋/,'0

2
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 6. Experiment 3 Decision Function. Let 𝑖 refer to an individual instance, 𝑋/ and 𝑋+ 

refer to the first and second feature variables, respectively, and 𝑌' refer to the target class for the 

instance under consideration. 

 

 

Figure 10. Experiment 3 Training Data. Red dots correspond to instances belonging to class 0, 

and grey dots correspond to instances belonging to class 1. 

 

As with the previous two experiments, in this experiment both the LRCT algorithm and 

the traditional decision tree algorithm were allowed to make one split. To test whether the LRCT 

algorithm could learn the polynomial decision boundary present in this scenario, however, the 

LRCT algorithm was allowed to learn up to third-degree polynomial relationships between 
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considered variables. OC1 was trained as in the original paper. The results of this experiment can 

be found in Table 3, and the decision boundary learned by the LRCT and presented on the test 

data can be found in Figure 11. 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

LRCT 0.986 810 2 669 19 0.99 0.98 0.99 

CART 0.805 576 39 632 253 0.80 0.80 0.80 

OC1 0.994 824 4 667 5 0.99 0.99 0.99 

Table 3. Experiment 3 Results 

 

 

Figure 11. Experiment 3 LRCT Learned Decision Boundary. Red dots correspond to instances 

belonging to class 0, and grey dots correspond to instances belonging to class 1. The black line 

indicates the decision boundary learned by the LRCT tree. 

 

Once again, with only two variables under consideration, similar performance between 

the LRCT algorithm and the OC1 algorithm is seen. However, once again the LRCT algorithm 
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was only allowed to make a single polynomial split, whereas the OC1 algorithm was trained until 

the exit criteria in the original paper were met. This indicates that the LRCT algorithm was able 

to quickly and efficiently identify the multivariate decision boundary present in this dataset, thus 

enhancing its explainability and interpretability. 

One important factor to note from this experiment is that the decision boundary learned 

by the LRCT algorithm is not as steep as the true decision boundary, as visible toward the right-

hand side of the black line in Figure 11. It is easy to see that the black decision curve falls under 

the true decision boundary as “Feature 1” increases. This is likely due to the mathematical nature 

of LRCT’s splitting criteria and how the multivariate regression line is created. As the number of 

bins and the amount of data increases, it is expected that LRCT’s polynomial splits will converge 

to the true decision boundary.  

 

Experiment 4: Five Variables, Single Polynomial Split 

Just as the second experiment in this study tested the LRCT algorithm’s ability to 

automatically identify features and multivariate splits of importance, the fourth experiment in 

this study tests the same characteristic; the only difference is that this experiment mirrored the 

polynomial decision boundary present in the third experiment. For this experiment, once again 

five thousand instances were created, with the first and second of these variables being expanded 

to fill the intervals (0, 5) and (0, 20), respectively. The remaining three variables were 

manipulated to exist in the intervals (-3, 0), (0, 17), and (-8, 0), respectively. The decision 

function was the same as the previous experiment as well, recorded in Equation 6. The data 

partitioning proportions and model hyperparameters were equivalent to the ones used in 
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Experiment 3. The results of each model in the experiment are presented in Table 4, and the 

decision boundary learned by the LRCT model is presented in Figure 12. 

 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

LRCT 0.998 808 1 689 2 1.0 1.0 1.0 

CART 0.815 583 50 640 227 0.81 0.82 0.81 

OC1 0.941 759 37 653 51 0.95 0.94 0.94 

Table 4. Experiment 4 Results 

 

 

Figure 12. Experiment 4 LRCT Learned Decision Boundary. Red dots correspond to instances 

belonging to class 0, and grey dots correspond to instances belonging to class 1. The black line 

indicates the decision boundary learned by the LRCT tree. 

 

In this experiment, a similar phenomenon to that present in Experiment 2 is seen. 

Namely, the LRCT and CART algorithms perform almost identically as in the two-variable 
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experiment (Experiment 3), but the OC1 model sees a decrease in performance compared to that 

experiment. Once again, it is believed that these performance characteristics are due to LRCT’s 

ability, and OC1’s inability, to identify a subset of variables for each split.  

 

Experiment 5: Two Variables, Single Linear Split, Noise 

Experiment 5 is the first experiment designed to identify whether LRCT can efficiently 

identify multivariate boundaries with “noise” present. In all previous experiments, the optimal 

decision boundary perfectly separated all instances in all datasets – the training data, the 

validation data, and the test data. However, this is rarely the case in practice when utilizing ML. 

To better understand LRCT’s abilities in more realistic scenarios, duplicates of the previous four 

experiments were run with various proportions of randomly selected instances labeled 

“incorrectly.” 

For Experiment 5, the data generation and optimal decision boundary were both created 

to be identical to Experiment 1; note that the decision boundary is presented in Equation 5. 

However, for this experiment, three separate runs were conducted. In the first run, 10% of the 

training data2 is selected at random to have its class label switched. The following two runs 

increase this percentage to 20% and 30%, respectively. A visualization presenting the training 

data with a noise level of 0.23 is presented in Figure 13. 

 
 

2 This 10% indicates a noise level of 0.1. 
3 A noise level of 0.2 indicates that 20% of the training data has its label switched. 
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Figure 13. Training data for Experiment 5 with noise level 0.2. Red dots correspond to instances 

belonging to class 0, and grey dots correspond to instances belonging to class 1. 

  

In contrast to the random noise applied to the training data, however, the validation and 

test data were not altered in these experiments. These data were unaltered to ensure an even 

comparison between this experiment and Experiment 1. Results for this experiment can be found 

in Table 5. 

  



69 
 

 

Noise 

Level 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

0.1 LRCT 0.867 108 22 152 18 0.84 0.88 0.87 

CART 0.867 108 22 152 18 0.84 0.88 0.87 

OC1 0.9 119 23 151 7 0.89 0.91 0.9 

0.2 LRCT 0.87 99 12 162 27 0.84 0.89 0.87 

CART 0.87 99 12 162 27 0.84 0.89 0.87 

OC1 0.773 97 39 135 29 0.74 0.8 0.77 

0.3 LRCT 0.783 123 62 112 3 0.79 0.78 0.78 

CART 0.783 123 62 112 3 0.79 0.78 0.78 

OC1 0.67 92 65 109 34 0.65 0.69 0.67 

Table 5. Experiment 5 Results 

 

The results of this experiment are interesting in that they reveal two characteristics of the 

LRCT algorithm. The first of these is that if a multivariate split cannot be found such that the 

performance of that split exceeds the performance of the “best” univariate split, the univariate 

split is used. Put more simply, LRCT reverts to using CART splits if no better multivariate split 

can be found. Note that in each of the sub experiments presented above, LRCT’s performance is 

equal to that of the CART decision tree; this equivalence of performance indicates that due to the 

noise present in this experiment, LRCT could not identify the optimal multivariate decision 

boundary. Despite LRCT being unable to identify the optimal multivariate decision boundary in 

this experiment, it appears that the OC1 algorithm had troubles with this as well. 
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Experiment 6: Five Variables, Single Linear Split, Noise 

Just as Experiment 5 replicated the scenario in Experiment 1 with added noise, 

Experiment 6 replicated the scenario in Experiment 2 with added noise. As such, the data 

generation techniques used in this experiment were the same as in Experiment 2, including the 

class labels denoted by Equation 5. Once again, noise levels of 0.1, 0.2, and 0.3 were imposed on 

the training data. Results of this experiment are presented in Table 6. Experiment 6 Results 

 

Noise 

Level 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

0.1 

 

LRCT 0.84 91 14 161 34 0.79 0.87 0.84 

CART 0.84 91 14 161 34 0.79 0.87 0.84 

OC1 0.81 100 32 143 25 0.78 0.83 0.81 

0.2 

 

LRCT 0.737 80 34 141 45 0.67 0.78 0.73 

CART 0.823 111 39 136 14 0.81 0.84 0.82 

OC1 0.747 93 44 131 32 0.71 0.78 0.75 

0.3 

 

LRCT 0.85 86 6 169 39 0.79 0.88 0.85 

CART 0.85 86 6 169 39 0.79 0.88 0.85 

OC1 0.653 76 55 120 49 0.59 0.7 0.65 

Table 6. Experiment 6 Results 

 

In this experiment, the same phenomenon present in Experiment 5 is seen for noise levels of 0.1 

and 0.3. Namely, the LRCT algorithm was unable to discover the underlying multivariate 

decision boundary, and thus it reverted to the same univariate boundaries discovered by the 
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CART tree with those noise levels. Interestingly, however, the LRCT algorithm did find a 

multivariate split for noise level 0.2. While that split may have led to better performance on the 

training and validation data, on the test data this split led the model to perform worse than both 

the CART and OC1 models, indicating there is a possibility for the LRCT algorithm to overfit 

and draw incorrect conclusions in training. Additionally, unlike the previous experiment, the 

OC1 model did not outperform both the LRCT and CART models for any of the noise levels in 

this experiment, indicating that the algorithm has the same difficulty with performing feature 

selection as in Experiment 2. 

 

Experiment 7: Two Variables, Single Polynomial Split, Noise 

Experiment 7 continues the trend of introducing noise to previous experiments. This time, 

noise was added to the procedures done in Experiment 3. As in Experiment 3, five thousand 

instances of two variables were generated, each drawn from the uniform distribution in the 

interval (0, 1). Just as previously, the first variable was expanded via multiplication to reside in 

the interval (0, 5), and the second was expanded similarly to reside in the interval (0, 20). The 

binary class label was created by using Equation 6. This time, however, three different levels of 

noise were added to the training data: 0.1, 0.2, and 0.3. These noise levels are the same as the 

ones used in the previous experiments containing noise. Once the training data was manipulated, 

an LRCT model trained to a depth of one, a traditional decision tree model trained to a depth of 

one, and an OC1 tree trained as in the original paper were all trained using the training and 

validation data. Metrics on test data, which was not imbued with noise, are presented in Table 7. 
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Noise 

Level 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

0.1 

 

LRCT 0.805 576 39 632 253 0.8 0.81 0.8 

CART 0.805 576 39 632 253 0.8 0.81 0.8 

OC1 0.89 756 92 579 73 0.9 0.88 0.89 

0.2 

 

LRCT 0.823 649 85 586 180 0.83 0.82 0.82 

CART 0.823 649 85 586 180 0.83 0.82 0.82 

OC1 0.81 679 135 536 150 0.83 0.79 0.81 

0.3 

 

LRCT 0.806 577 39 632 252 0.80 0.81 0.80 

CART 0.806 577 39 632 252 0.80 0.81 0.80 

OC1 0.664 564 239 432 265 0.69 0.63 0.66 

Table 7. Experiment 7 Results 

 

The results of this experiment show similar results compared to those in Experiment 5 

with the exception that for noise level 0.1 the OC1 algorithm was able to learn the contrived 

decision boundary very well. However, OC1’s performance degrades somewhat when the noise 

level is raised to 0.2, and significantly when the noise level is raised to 0.3. Additionally, the 

LRCT algorithm reverted to univariate splits for all noise levels in this experiment, which is why 

its performance is equal to that of the CART models for each noise level. 
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Experiment 8: Five Variables, Single Polynomial Split, Noise 

Experiment 8 was the final experiment which replicated previous experiments but 

included noise present in the training data. The data generation for this experiment was 

completed replicated from Experiment 4, where five variables were created, and a polynomial 

split consistent with Equation 6 was used to define the decision boundaries between classes. For 

each of the separate three sub-experiments within this experiment, noise was added to the 

training data. As with the previous experiments, noise levels of 0.1, 0.2, and 0.3 were used. 

LRCT, CART, and OC1 models were then trained on the training data as done previously. The 

results of these models on test data, which contained no noise, is present in Table 8. 

 

Noise 

Level 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

0.1 

 

LRCT 0.815 583 50 640 227 0.81 0.82 0.81 

CART 0.815 583 50 640 227 0.81 0.82 0.81 

OC1 0.839 717 148 542 93 0.86 0.82 0.84 

0.2 

 

LRCT 0.972 806 38 652 4 0.97 0.97 0.97 

CART 0.815 583 50 640 227 0.81 0.82 0.81 

OC1 0.747 631 200 490 179 0.77 0.72 0.75 

0.3 

 

LRCT 0.962 783 30 660 27 0.96 0.96 0.96 

CART 0.821 646 104 586 164 0.83 0.81 0.82 

OC1 0.675 567 244 446 243 0.70 0.64 0.68 

Table 8. Experiment 8 Results 
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Contrary to some of the previous experiments, in this experiment the LRCT algorithm 

was able to effectively learn the created decision boundary. With the noise level of 0.1, clearly 

the LRCT and CART trees identified the same split, as their performances were identical. 

However, for noise levels of 0.2 and 0.3, the LRCT trees were able to effectively identify the 

multivariate relationships present in the data, obtaining over 95% accuracy and weighted F1 

scores of greater than 0.95 on both test datasets. Similar again to previous experiments, the OC1 

tree’s performance decreased drastically as noise levels were increased, while the CART and 

LRCT trees were able to maintain similar levels of performance across the noise levels. 

 

Experiment 9: Checkerboard Configuration 

Compared to the previous eight experiments, Experiment 9 differs remarkably in terms of 

modeling methodology. Instead of training only LRCT, OC1, and CART models in this 

experiment, several additional model types were also trained. These additional models were 

KNN, logistic regression, and a fully connected neural network, meaning a total of 6 model types 

were tested, each with varying levels of explainability and expected predictive power. 

Additionally, compared to the previous experiments, Experiment 9 featured a much more 

complicated decision boundary. Instead of a binary task with a decision boundary defined by a 

single function of polynomial degree, the target variable in this experiment segments off squares 

of side length in two-dimensional space, leaving the “checkerboard” configuration seen in Figure 

14. The data generation procedure required generating two random variables, each independently 

sampled from the uniform distribution in the interval (0, 10). The target variable was then 

created according to the configuration mentioned previously. Once more, 30% of the data was 

reserved for test data, and 40% of the remaining data was reserved for validation data. 
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Figure 14. Experiment 9 Training Data. Red dots correspond to instances belonging to class 0, 

and grey dots correspond to instances belonging to class 1. 

 

This experiment also utilized performed a grid search across various hyperparameters for 

the CART, KNN, logistic regression, and LRCT models. The neural network was trained for 

1,000 epochs using validation data accuracy as the performance measure to indicate better or 

worse performance; only the best model weights according to this metric were used in the end. 

The results on the test data for this experiment are presented in Table 9. 

The results of this experiment show the relative difficulty for the various kinds of models 

to identify the checkerboard decision boundary present in this data. As KNN predicts based on 

proximity, it is understandable why KNN achieves high performance on this data. Similarly, LR 

implicitly requires certain assumptions about the data’s distribution be met. These assumptions 

are not met in this data, thus the extremely poor performance of the LR model results. The 

CART, neural network, and OC1 models perform similarly on this problem, with the LRCT 

model’s performance lagging further behind the rest of the models except for the LR model. A 

possible implication of this experiment as it relates to understanding the performance of the 
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LRCT algorithm is that LRCT likely performs better in learning scenarios where there are 

smaller numbers of clusters of each class. As this experiment contains multiple clusters for each 

of the two classes, the underlying logic behind the LRCT algorithm cannot handle these different 

clusters appropriately, as it is implicitly designed to handle all training data of a single class as a 

single group.  

 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

OC1 0.797 1215 315 1175 295 0.80 0.79 0.80 

CART 0.785 921 57 1433 589 0.74 0.82 0.78 

KNN 0.932 1409 102 1388 101 0.93 0.93 0.93 

Logistic 

Regression 

0.497 0 0 1490 1510 0.00 0.66 0.33 

Neural 

Network 

0.817 1232 270 1220 278 0.82 0.82 0.82 

LRCT 0.699 1214 606 884 296 0.73 0.66 0.70 

Table 9. Experiment 9 Results 
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Experiment 10: Random Binary Classification 

Experiment 10 follows a similar experimental style as Experiment 94 in that it is designed 

to more closely mimic the training experimental style ML practitioners use when building 

models. However, with this experiment, the data generation procedure was completely 

automated, with only a few parameters chosen to guide the way the data was generated. 

For this experiment, the scikit-learn make_classification function (Pedregosa, Varoquaux, 

Gramfort, & Michel, 2011) was used to create a dataset containing 10,000 instances of two 

features for a binary classification task. Each of the two features were sampled from the standard 

normal distribution with standard deviation 1, and two clusters were created for each class. Data 

was divided into training, validation, and testing data as with previous experiments. A 

visualization of the training data for this experiment is presented in Figure 15. 

 

 

Figure 15. Experiment 10 Training Data. Red dots correspond to instances belonging to class 0, 

and grey dots correspond to instances belonging to class 1. 

 
 

4All remaining experiments follow this style. 
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The same model types were used as with the previous experiment, and a hyperparameter 

grid search procedure was utilized for the CART, KNN, Logistic Regression, and LRCT models. 

The neural network model was once more trained for 1,000 epochs with validation data accuracy 

as the measure for model performance. The results for Experiment 10 are presented in Table 10. 

 

Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

OC1 0.970 1445 44 1466 45 0.97 0.97 0.97 

CART 0.983 1469 31 1479 21 0.98 0.98 0.98 

KNN 0.981 1470 38 1472 20 0.98 0.98 0.98 

Logistic 

Regression 

0.938 1390 85 1425 100 0.94 0.94 0.94 

Neural 

Network 

0.982 1470 33 1477 20 0.98 0.98 0.98 

LRCT 0.979 1467 39 1471 23 0.98 0.98 0.98 

Table 10. Experiment 10 Results 

 

Clearly, for this experiment, all the models under consideration were able to learn an 

efficient representation of the decision function for this problem. In this regard, these results 

show that the LRCT algorithm can achieve comparable performance on realistic modeling 

scenarios compared to other model types. Interestingly, however, the LRCT model did not 

perform as well as the CART model in this experiment, indicating that the LRCT model 

identified multivariate splits in the learning process which did not generalize to the test data. 
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The results of this experiment further support the conclusions made after analyzing the 

previous experiment’s results in that multiple clusters of a single class are not as easily learned 

by the LRCT algorithm as single clusters. As the LRCT algorithm inherently assumes that the 

data belonging to each class can be treated as a universal group instead of multiple clusters or 

groups, this feature is likely an underlying reason why for this experiment and the past 

experiment the LRCT algorithm's performance have been worse than some of the other models 

under consideration. It is important to note here, however, that for this experiment LRCT does 

not suffer much in terms of performance due to the closeness of each of the clusters present in 

this data. 

 

Experiment 11: Random Multiclass Classification 

Experiment 11 is similar to Experiment 10 in that the data generation procedure was once 

again completely automated. For this experiment, the same scikit-learn make_classification 

function (Pedregosa, Varoquaux, Gramfort, & Michel, 2011) was utilized to create the data, but 

for this experiment 10,000 total instances of 12 features were created. To increase the complexity 

of this experiment, only six of those features were created to have informational value, four of 

the features were created to be linear combinations of the six informative features, and two 

additional features were created to be redundant copies of two informative features. This learning 

problem featured four classes instead of a binary classification problem, and each of the classes 

were grouped into three clusters. 

Once more, data was split into training, validation, and test sets as all previous 

experiments. Each of the models were trained as previously, including grid searches for finding 
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most performant parameters and number of epochs for the neural network model. Performance 

metrics for each of the models is presented in the following tables. 

 

Actual/Predicted Class 0 Class 1 Class 2 Class 3 

Class 0 573 55 49 36 

Class 1 61 549 81 70 

Class 2 40 79 580 45 

Class 3 50 64 73 595 

Table 11. OC1 Confusion Matrix, Experiment 11. 

 

Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 

3 

Class 0 571 72 29 41 

Class 1 54 561 53 93 

Class 2 64 76 529 75 

Class 3 49 77 53 603 

Table 12. CART Confusion Matrix, Experiment 11. 
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Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 

3 

Class 0 622 32 36 23 

Class 1 43 622 39 57 

Class 2 34 66 599 45 

Class 3 32 45 27 678 

Table 13. KNN Confusion Matrix, Experiment 11. 

 

Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 

3 

Class 0 466 135 86 26 

Class 1 124 322 128 187 

Class 2 135 71 483 55 

Class 3 69 192 53 468 

Table 14. LR Confusion Matrix, Experiment 11. 

 

Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 

3 

Class 0 640 25 27 21 

Class 1 44 648 39 30 

Class 2 30 36 659 19 

Class 3 26 31 32 693 

Table 15. Neural Network Confusion Matrix, Experiment 11. 
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Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 

3 

Class 0 590 70 39 14 

Class 1 56 621 32 52 

Class 2 41 72 581 50 

Class 3 37 77 31 637 

Table 16. LRCT Confusion Matrix, Experiment 11. 

 

Model 

Type 

Overall 

Accuracy 

Class 

0 F1 

Class 

1 F1 

Class 

2 F1 

Class 

3 F1 

Overall 

F1 

OC1 0.766 0.80 0.73 0.76 0.78 0.77 

CART 0.755 0.79 0.73 0.75 0.76 0.75 

KNN 0.840 0.86 0.82 0.83 0.86 0.84 

LR 0.580 0.62 0.43 0.65 0.62 0.58 

NN 0.88 0.88 0.86 0.88 0.90 0.88 

LRCT 0.810 0.82 0.78 0.81 0.83 0.81 

Table 17. Experiment 11 Aggregated Results. 

 

For this experiment, the performance benefit of the LRCT algorithm compared to the 

other tree-based algorithms can clearly be seen. There is a noticeable difference in performance 

for both the OC1 and CART models compared to the LRCT model, indicating that the LRCT 

algorithm was able to learn the decision boundaries between classes more generally than those 
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model types. Interestingly, however, the LRCT model’s performance still lagged that of both 

KNN and the neural network. 

 

Experiment 12: Fisher’s Iris Dataset Classification 

Experiment 12 sees the use of Fisher’s famous iris classification dataset (Fisher, 1936). 

This dataset contains 150 samples of four features sampled from 50 of each of three different 

varieties of iris flowers. The features collected were the sepal length, the sepal width, the petal 

length, and the petal width, all measured in centimeters, for setosa, versicolor, and virginica 

varieties of iris flowers. 

In this experiment, each of the length and width measurements were utilized as input 

features to predict the variety of iris the measurements correspond to. As before, the data was 

split into training, validation, and test sets; each of the models trained were trained as in the 

previous few experiments as well. Performance metrics for each of the models is presented in the 

following tables. 

 

Actual/Predicted Setosa Versicolor Virginica 

Setosa 15 0 0 

Versicolor 1 12 3 

Virginica 0 0 14 

Table 18. OC1 Confusion Matrix, Experiment 12 
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Actual/Predicted Setosa Versicolor Virginica 

Setosa 15 0 0 

Versicolor 0 13 3 

Virginica 0 1 13 

Table 19. CART Confusion Matrix, Experiment 12 

 

Actual/Predicted Setosa Versicolor Virginica 

Setosa 15 0 0 

Versicolor 0 14 2 

Virginica 0 2 12 

Table 20. KNN Confusion Matrix, Experiment 12 

Actual/Predicted Setosa Versicolor Virginica 

Setosa 15 0 0 

Versicolor 0 13 3 

Virginica 0 0 14 

Table 21. LR Confusion Matrix, Experiment 12 

 

Actual/Predicted Setosa Versicolor Virginica 

Setosa 15 0 0 

Versicolor 0 15 1 

Virginica 0 1 13 

Table 22. Neural Network Confusion Matrix, Experiment 12 
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Actual/Predicted Setosa Versicolor Virginica 

Setosa 15 0 0 

Versicolor 0 14 2 

Virginica 0 1 13 

Table 23. LRCT Confusion Matrix, Experiment 12 

 

Model 

Type 

Overall 

Accuracy 

Setosa 

F1 

Versicolor 

F1 

Virginica 

F1 

Overall 

F1 

OC1 0.911 0.97 0.86 0.90 0.91 

CART 0.911 1.0 0.87 0.87 0.91 

KNN 0.911 1.0 0.88 0.86 0.91 

LR 0.933 1.0 0.90 0.90 0.93 

NN 0.956 1.0 0.94 0.93 0.96 

LRCT 0.933 1.0 0.90 0.90 0.93 

Table 24. Experiment 12 Aggregated Results  

 

Each of the models in this experiment was able to identify each of the classes of iris 

flowers relatively efficiently, as indicated by the high accuracy and F1 scores of each of the 

models. However, the LRCT model was able to identify multivariate relationships within the 

data which generalized to improve performance on test data compared to the other explainable 

algorithms. 
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Experiment 13: Wisconsin Breast Cancer Dataset 

Experiment 13 utilizes the diagnostic breast cancer dataset created by Dr. William 

Wolberg, Nick Street, and Olvi Mangasarian and accessed through the UCI Machine Learning 

Repository (Dua & Graff, 2017). This dataset contains over 500 instances of 30 variables taken 

from fine needle aspirates of breast masses. The goal of this problem is to correctly classify those 

samples into benign and malignant cases using the features available. This problem provides a 

unique test for the LRCT algorithm, as this dataset has a much higher dimensionality than the 

other problems faced. This higher dimensionality stresses the combinatorial complexity of the 

LRCT algorithm. 

For this experiment, all model training procedures, data splitting, and preprocessing 

techniques were identical to the previous few experiments run. Results for this experiment are 

presented in Table 25. 
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Model 

Type 

Accuracy True 

Negatives 

False 

Negatives 

True 

Positives 

False 

Positives 

Class 

0 F1 

Class 

1 F1 

Overall 

F1 

OC1 0.923 52 8 107 4 0.90 0.95 0.93 

CART 0.959 52 3 112 14 0.94 0.97 0.96 

KNN 0.942 50 4 111 6 0.91 0.96 0.94 

Logistic 

Regression 

0.959 51 2 113 5 0.94 0.97 0.96 

Neural 

Network 

0.959 50 1 114 6 0.93 0.97 0.96 

LRCT 0.959 51 2 113 5 0.94 0.97 0.96 

Table 25. Experiment 13 Results 

 

All models in this experiment performed well on the classification task at hand. However, 

due to the important nature of this problem and identifying potentially life-threatening health 

issues in patients, there is a particular interest in minimizing the rate at which false negatives 

occur. Based on this metric, the neural network outperforms all other models with only one false 

negative. The LRCT and Logistic regression models are tied for second with regards to this 

performance metric, with only two false negatives present. Additionally, both the linear 

regression and LRCT algorithms resulted in only five false positives, whereas the neural network 

had six false positives. As the LRCT and linear regression models are also inherently 

explainable, whereas the neural network is opaque, these models may be more useful from a 
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scientific standpoint to identify and analyze which specific relationships in the data are being 

used for predictive purposes. 

 

Experiment 14: Wine Classification 

The final experiment in this study contains a multiclass classification problem which 

contains 178 instances of 13 features of three classes of wines. Each class has at least 50 

individual instances. Once again, this dataset was retrieved through the UCI Machine Learning 

Repository (Dua & Graff, 2017). This experiment followed the procedures of the previous 

experiments with regards to data splitting and model training procedures as the previous 

experiments. The results for this experiment are presented in the following figures. 

  

Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 0 19 1 1 

Class 1 0 17 4 

Class 2 0 0 12 

Table 26. OC1 Confusion Matrix, Experiment 14 
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Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 0 19 2 0 

Class 1 1 16 4 

Class 2 0 0 12 

Table 27. CART Confusion Matrix, Experiment 14 

Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 0 20 0 1 

Class 1 0 15 6 

Class 2 0 0 12 

Table 28. KNN Confusion Matrix, Experiment 14 

 

Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 0 20 1 0 

Class 1 1 18 2 

Class 2 0 0 12 

Table 29. Logistic Regression Confusion Matrix, Experiment 14 
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Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 0 18 3 0 

Class 1 0 20 1 

Class 2 0 0 12 

Table 30. Neural Network Confusion Matrix, Experiment 14 

 

Actual/Predicted Class 

0 

Class 

1 

Class 

2 

Class 0 20 1 0 

Class 1 2 17 2 

Class 2 0 0 12 

Table 31. LRCT Confusion Matrix, Experiment 14 

 

Model 

Type 

Overall 

Accuracy 

Class 

0 F1 

Class 

1 F1 

Class 

2 F1 

Overall 

F1 

OC1 0.889 0.95 0.87 0.83 0.89 

CART 0.870 0.93 0.82 0.86 0.87 

KNN 0.778 0.91 0.79 0.54 0.78 

LR 0.926 0.95 0.90 0.92 0.93 

NN 0.926 0.92 0.91 0.96 0.93 

LRCT 0.907 0.93 0.87 0.92 0.91 

Table 32. Experiment 14 Aggregated Results 
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In this final experiment, many of the same general performance trends as present in the 

previous experiments can be seen. The LRCT model outperforms many of the other explainable 

models in this experiment, especially the other tree-based models, and the neural network 

outperforms all other models. In general, these results serve as additional evidence to support the 

level of performance typically seen from the LRCT algorithm on both contrived and collected 

data and learning scenarios. 

 

Comprehensive Summary 

In this chapter, the results of the experiments conducted in the study are presented. In 

total, 14 experiments were completed across a range of datasets. The initial experiments 

conducted on artificial data were designed specifically to test LRCT’s ability to learn a specific 

set of decision boundaries compared to other tree-based methods. Following those experiments, a 

series of additional experiments were conducted across a larger range of model types. These 

experiments contained binary and multiclass classification tasks across a range of both 

artificially generated and collected datasets. In general, the LRCT algorithm performed better 

than the other tree-based algorithms on most experiments, indicating that the research questions 

posed at the beginning of this work are answered through these experiments. 

The contents of this chapter are a culmination of the research efforts of this study.  At the 

beginning of this work, a series of research questions was posed related to whether an inherently 

interpretable machine learning algorithm can be created which improves upon the performance 

of other interpretable algorithms.  To better answer these questions, a thorough search of the 

literature was conducted across different subfields within the machine learning community. 



92 
 

 

The first of the subfields investigated was related to decision trees.  Built as one of the 

prototypical explainable machine learning algorithms, decision trees make a series of splits on 

input data to make predictions.  Interestingly, however, decision tree research has focused 

primarily on improving model performance through ensemble methods, rather than improving 

model splitting methods.  Only a small portion of the detected literature considered utilizing 

multivariate splits in decision trees, which could potentially improve predictive performance 

while simultaneously maintaining model interpretability. 

The second subfield which was researched through the literature is the newer field of 

XAI.  It was found that most of the work done in this field to date has focused on improving the 

explainability or interpretability of black-box models, such as neural networks, rather than 

improving the performance of interpretable models.  While there were a few examples of 

algorithms which were designed for the latter purpose, the ones identified through the literature 

review do not directly relate to the research questions posed for this work. 

After the literature review was completed, this study presents the LRCT algorithm.  This 

algorithm, designed to efficiently identify multivariate splits across a range of variables in 

decision tree learning, resulting in an explainable model which is expected to achieve greater 

performance on complicated tasks than other explainable model types, thus allowing it to be used 

in scenarios where high levels of regulation are present, such as in defense, health care, and 

insurance.  After the LRCT algorithm was presented, an overview of the experiments conducted 

in this chapter is made. 

The following chapter, the final one of this work, will investigate the results of the 

experiments further, provide a more in-depth analysis of the overall performance of the LRCT 

algorithm compared to other algorithms, identify any shortcomings of this research, and provide 
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a set of recommendations for future work. This analysis will review the initial goals of this study 

as well and identify how the results of the experiments contribute to these goals.  

  



94 
 

 

CHAPTER 5: FINDINGS AND RECOMMENDATIONS 

 

In the beginning of this work, a series of Research Questions (RQs) was posed, with the 

main question being: 

 

Can an inherently interpretable algorithm be developed with improved performance over 

traditional interpretable models? 

 

The rest of this work, including the literature review, the formulation of the LRCT 

algorithm and its learning procedures, and the experiments conducted in the previous chapter, 

have all served to assist in answering this question. The focus of this final chapter will be to 

analyze the entirety of that completed work and formulate an answer to the primary RQ. This 

will be done by first analyzing the results of the experiments contained in Chapter 4 in greater 

detail, followed by identifying any limitations of the study, and making final conclusions about 

the answer this work provides for the primary RQ. Finally, recommendations for future work are 

presented to facilitate any additional research to be conducted in this area. 

 

Experiment Results 

As the results of each individual experiment have been discussed in greater detail in the 

previous chapter, the analysis that follows will focus on identifying aggregate trends and making 

conclusions about the overall performance of the LRCT algorithm and how it addresses the 

primary RQ of this work. The experiments conducted in this study ranged across a variety of 
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classification tasks, including binary and multiclass classification on artificial and collected data. 

An aggregation of the experiment results is presented in Table 33. 

 

Experiment Results 

Experiment 1: Two Variables, 

Single Linear Split 

LRCT makes a near perfect classification with a single linear 

split, providing evidence that it can identify multivariate 

decision boundaries efficiently in simple situations. 

Experiment 2: Five Variables, 

Single Linear Split 

LRCT sees similar performance compared to the previous 

experiment, indicating that it can identify information-rich 

combinations of variables and perform feature selection. 

Experiment 3: Two Variables, 

Single Polynomial Split 

LRCT once again identifies an efficient decision boundary and 

achieves high performance with a single split. Additionally, 

LRCT’s decision boundary is not as steep as the true decision 

curve, a feature of how the algorithm identifies splits. 

Experiment 4: Five Variables, 

Single Polynomial Split 

LRCT once again efficiently identifies which variables to 

perform splitting on, something which it appears the OC1 

algorithm does not do.  

Experiment 5: Two Variables, 

Single Linear Split, Noise 

In every case, LRCT reverts to using traditional univariate splits 

instead of multivariate splits, a feature included in the algorithm 

to help ensure its performance is at least that of a traditional 

decision tree. 

Experiment 6: Five Variables, 

Single Linear Split, Noise 

The LRCT model identified a multivariate boundary only with 

noise level of 0.2, and this multivariate boundary led to worse 
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performance than both the CART and OC1 models. This 

indicates that it is indeed possible for LRCT to overfit and draw 

incorrect conclusions. 

Experiment 7: Two Variables, 

Single Polynomial Split, Noise 

LRCT reverted to univariate splits for each of the cases in this 

experiment, once more indicating that LRCT is susceptible to 

noise. Additionally, the OC1 model was able to efficiently 

identify the decision boundary in this case with a noise level of 

0.1, but OC1 performance degraded significantly as the noise 

level increased.  

Experiment 8: Five Variables, 

Single Polynomial Split, Noise 

With a noise level of 0.1, LRCT reverted to a univariate split. 

However, with noise levels of 0.2 and 0.3, LRCT was able to 

efficiently identify the decision boundaries, achieving over 96% 

accuracy on test data in both cases. Once more, OC1’s 

performance degraded significantly as noise levels increased. 

Experiment 9: Checkerboard 

Configuration 

In this first experiment with more than tree-based models, the 

only model which performed exceptionally well was the KNN 

model. The logistic regression model performed exceptionally 

poorly, and the LRCT model performed poorly as well. The 

results of this experiment indicate that LRCT is not adept at 

identifying the kinds of relationships present in this data.  

Experiment 10: Random Binary 

Classification 

All models perform well in this experiment, achieving over 

93% accuracy on the test data. However, virtually all models 

except for OC1 and logistic regression achieved approximately 
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98% accuracy and F1 score, indicating that LRCT performed 

nearly as well as or better than all other models under 

consideration. 

Experiment 11: Random 

Multiclass Classification 

In this experiment, LRCT outperformed all other explainable 

model types except for the KNN model. 

Experiment 12: Fisher’s Iris 

Dataset Classification 

As in the previous experiment, the LRCT algorithm was only 

outperformed by the neural network model in this experiment. 

The only explainable model the LRCT algorithm was matched 

in performance with was the linear regression model. 

Experiment 13: Wisconsin 

Breast Cancer Dataset 

Four models achieved the same accuracy on test data in this 

experiment, with the LRCT model being one of them. However, 

given the additional goal of minimizing false negatives in this 

situation, LRCT was tied among the explainable models in this 

regard and was only outperformed by the neural network 

model. 

Experiment 14: Wine 

Classification 

LRCT outperforms many of the other explainable models in 

this experiment, especially the other tree-based models. 

However, the logistic regression model outperformed all other 

explainable models and equaled the accuracy of the neural 

network. 

Table 33. Experiment Results Summary. 
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The first four experiments were designed to test LRCT’s ability to identify multivariate 

linear and polynomial splits in simple circumstances where splits across two variables perfectly 

classify the data. In these experiments, the LRCT algorithm performed exceptionally well, as it 

was able to identify the multivariate decision boundary nearly perfectly with a single split in all 

cases, even the ones requiring feature selection. LRCT performed much better than CART in 

these situations, due to the multivariate splitting characteristic of LRCT compared to the purely 

univariate splits made by CART. Additionally, OC1 performed similarly well to LRCT in these 

experiments, but OC1 was trained as in the original paper (Murthy, Kasif, & Salzberg, 1994), 

meaning the OC1 models which resulted were more complex than the LRCT models through 

their use of multiple splits. 

The results of these experiments provide evidence for a positive answer to the primary 

RQ. When considering both the predictive performance and interpretability of results, LRCT 

outperforms both CART and OC1 in these experiments. One drawback to the LRCT algorithm 

which has been raised previously, however, is that in polynomial split experiment the decision 

function learned by the LRCT tree does not have as much curvature as the true decision 

boundary. This is due to the methods used to identify multivariate splits by the LRCT algorithm. 

Splits can be improved by increasing the number of bins created; however more data is required 

to ensure meaningful, statistically significant bins are used. 

The following four experiments repeated the initial four, but this time noise was added to 

the training data in the form of a proportion of randomly incorrectly labeled instances. The 

results of these experiments are particularly interesting because they largely result in the trained 

LRCT trees creating only univariate splits. Multivariate splits were only created in Experiment 6 

with a noise level of 0.2 and Experiment 8 with noise levels of 0.2 and 0.3, and only in 



99 
 

 

Experiment 8 did the splits result in better performance than the CART model. These results 

indicate that the LRCT algorithm is susceptible to noise, which was unexpected. Furthermore, 

the underperforming split identified by the LRCT algorithm in Experiment 6 indicates that 

LRCT can be susceptible to overfitting in some circumstances. 

When comparing LRCT’s performance in these four experiments to the performance of 

OC1, it becomes clear how important it is that LRCT can revert to univariate splits if needs be. 

In many of these cases, OC1 degrades significantly in performance as noise levels increase while 

CART and LRCT performance does not degrade at all or at a much slower rate. This stability can 

be attributed to the phenomenon that LRCT reverts to more-stable univariate splits if a 

multivariate split which outperforms that univariate split cannot be found. 

Experiment 9, where the binary data is configured in a checkerboard configuration, is the 

first experiment with all model types under consideration in this study utilized. Additionally, this 

experiment was the first one that utilized a grid search methodology to select hyperparameters 

for each model except the neural network, which was trained using traditional methods and had 

the best weights preserved and used for testing. For this experiment, the LRCT algorithm was 

trained to a maximum depth of up to 21 and a highest polynomial degree of 2. 

Unfortunately, LRCT did not perform as well as anticipated in this experiment. It was 

hypothesized that LRCT’s use of binning while splitting would allow the algorithm to identify 

when clusters of points are present in the way they are in this experiment. However, LRCT 

performed nearly the worst out of all model types in this experiment. Additionally, LRCT took 

an extremely long time to train in this experiment, due to the characteristic that for every 

possible split considered there are possibly multiple linear regression models trained. The large 

number of computations required to thus train the models past a shallow depth makes LRCT 
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inefficient. This feature will be discussed later in this chapter as an area of improvement for 

future research. 

Experiments 10 and 11 contained the full set of algorithms as well, and all algorithms 

were trained the same way they were in the previous experiment. For these experiments, 

however, the data generation techniques were automated. In Experiment 10, a binary 

classification task was created with two variables and two clusters per class created for each of 

the two classes. For Experiment 11, four classes were created across 12 variables, with six of 

those variables being informative, four redundant, two repeated, and three clusters created for 

each individual class. Based on these experiments, a few important insights about the LRCT 

algorithm and how it answers the primary RQ can be made. 

Firstly, it appears that multiple clusters for each of the classes can be problematic for the 

LRCT algorithm. This is due to the mathematical structure of how LRCT decides to make splits 

and how the algorithm implicitly treats each class as existing within a single cluster. 

Additionally, for multiclass classification, the LRCT algorithm was trained using a global 

approach rather than a one-versus-rest or alternative approach. As a result, the multivariate splits 

which occur in Experiment 11 are the result of averaging the regression models which are 

created on a per-class basis. Taking a one-versus-rest approach, in which individual models are 

created specifically to identify each of the classes to be identified, may yield better results. 

One of the key takeaways from these experiments is that in both experiments the LRCT 

model performs nearly identically to or better than each of the other explainable and/or 

interpretable models. This result provides further evidence for a positive answer to the primary 

RQ. While the LRCT model did not perform as well as the KNN model in Experiment 11, LRCT 

also does provide more explicit information about the decision function used to determine the 
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classification decisions. Furthermore, LRCT also performs automatic feature engineering and 

selection during this process, meaning it is better able to provide the end user with more specific 

information regarding the relationships learned within the data.  

The final three experiments are designed to replicate the “real world” performance of 

LRCT and the other models under consideration as closely as possible. This goal is achieved by 

utilizing collected data across a variety of domains and problems. 

The first of these problems is the multiclass iris classification dataset (Fisher, 1936). In 

this experiment, all the models were able to classify the test data with over 90% accuracy, but 

only three models were able to achieve greater performance. These three models were the neural 

network (95.6%), the logistic regression model (93.3%), and the LRCT model (93.3%). This 

finding is very informative as it relates to the primary RQ, since the LRCT model performed 

equally as well or better than all the other inherently interpretable model types. 

In the second of these problems, which identified whether patients had breast cancer 

based on clinical findings the experiment once more yielded positive results with regards to the 

primary RQ; the LRCT model was able to efficiently identify a single split across three variables 

of degree 2 which achieves performance equal to or better than all the other models under 

consideration, including the neural network. Not only does the LRCT model in this case provide 

better predictive performance than all other models when also considering the goal of 

minimizing false negatives, but it also does so in an efficient, explainable manner which can be 

studied and validated by experts. 

The last experiment in this study, where the task was to identify different classes of wine, 

presents the final pieces of information available through this study into the performance of the 

proposed LRCT algorithm. For this problem, there are three classes of wines to be identified 
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which are distributed slightly unevenly in the training data. There are 59 instances of class 0, 71 

instances of class 1, and 48 instances of class 2. Once again, all models perform relatively well in 

this experiment, with the least performant one being the KNN model which achieved 77.8% 

accuracy on the test data. The OC1 model slightly outperformed the CART model, but the LRCT 

algorithm outperformed all except the neural network and linear regression models, which 

perform nearly identically and achieve the same accuracy on the test data. While the LRCT 

model does not outperform every other explainable method in this experiment, it does once again 

outperform the other tree methods studied. Furthermore, the parameters which resulted in this 

performance for the LRCT model was a maximum depth of three and splits across a maximum of 

two variables. Similarly, the CART model was also trained to a depth of three, indicating that the 

LRCT model was able to identify efficient multivariate splits which provided additional 

predictive performance compared to the univariate splits created by the CART algorithm. The 

results of this experiment further support a positive answer to the primary RQ, as LRCT 

outperforms many of the other explainable algorithms. 

 

Limitations 

There are a few limitations to this study. The first of these is that it would be impossible 

to test all model types for this study. Random forest and other tree-based ensemble learners were 

left out of consideration. The original intent for this omission was to focus on testing the LRCT 

algorithm against other interpretable non-ensemble algorithms. However, future research should 

incorporate ensemble methods in its studies as well. 

Another limitation of this study was the time required to train each LRCT model, 

particularly when hyperparameter grid search was applied. Due to the way LRCT is implemented 
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for this study, both in terms of algorithmically and in the software used, training each individual 

LRCT model was a timely process as maximum depth increased. To save some time during the 

training process, parameter searches were restricted to regions expected to contain the optimal 

solutions. Despite this limitation, the results of this study do show that the proposed LRCT 

algorithm can perform better than many of the other models under consideration in this study, 

particularly when explainability is also a factor. 

A third limitation to this study is the number of individual experiments conducted. The 

goal of this study is to identify whether the LRCT algorithm proposed herein can serve as a 

legitimate, powerful replacement to many existing ML algorithms, all while remaining 

interpretable. As such, this study heavily relies on the evidence provided through the 

experiments conducted. However, regardless of the total number of experiments conducted in 

this study, such research will always be inherently incomplete; there is always more data which 

can be tested. There is perhaps no way to mathematically prove that the LRCT algorithm will be 

better than another, alternative algorithm. Despite this, the study was conducted in such a way 

that a multitude of classification scenarios were tested, each one providing information into the 

relative performance levels of each of the algorithms under question. Similarly, by running many 

experiments on a variety of different datasets, a more accurate depiction of overall performance 

compared to alternative algorithms can also be determined.  

 

Conclusions and Original Contribution 

Despite the shortcomings mentioned in the previous section, this study does provide 

answers to the RQs posed at the beginning of this work. The literature review presented in 

Chapter 2 provides an answer to RQ1, where existing multivariate decision tree algorithms are 
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identified. OC1 is identified as a leading multivariate decision tree algorithm, and it was utilized 

in the experimental portion of the study to provide an answer to RQ4. 

The experimental setup of this study was also intended to provide answers to RQ2 and 

RQ3, which asked whether applying linear regression as a feature engineering technique in 

classification tree learning improves performance over traditional classification trees and other 

common interpretable algorithms, respectively. After analyzing the experimental results of the 

study, LRCT performed equally as well as or better than CART in 12 of the 14 experiments, except 

for experiment 6 with a noise level of 0.2. LRCT also performed as well as, better than, or within 

a margin of error of OC1 in 12 experiments as well, except for experiment 5 with noise level 0.1, 

experiment 7 with noise level 0.1, and experiment 8 with noise level of 0.1. Of the five experiments 

where additional interpretable models are considered, LRCT obtained the best or tied for best 

performance in two of them and performed second best in an additional two. LRCT performed 

equally as well as the neural network in only one experiment. 

The results of the experimental portion of this study do provide favorable evidence for the 

RQs presented in the first chapter of this work. By performing better than both CART and OC1 in 

most of the experiments presented in this study, it appears that LRCT will outperform these 

algorithms on average. This evidence provides support for a favorable answer to RQ2 and RQ4. 

The evidence this study provides for RQ3 is more nuanced than the relatively 

straightforward answer to the other RQs. Compared to the other interpretable methods tested in 

the five experiments with all models considered, LRCT performed among the top two in four of 

these experiments and performed the best in two of these. While these performance metrics do 

provide evidence that LRCT may consistently perform among the top interpretable algorithms, it 

is interesting that it did not consistently outperform all other models in these experiments. 
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The LRCT model was typically outperformed by the KNN models in these experiments. 

This trend indicates that perhaps LRCT will consistently be outperformed by KNN, but due to the 

small sample size of experiments conducted in this study such a conclusion cannot yet be made. 

One point of interest, however, is the level of interpretability available via both LRCT and KNN. 

Referring to the definitions made in Chapter 1 of this work, it is clear that both model types are 

Transparent and Understandable, but the direct Interpretability of KNN is more difficult. The entire 

basis of trust and understanding for KNN models comes from the idea that the closest K points in 

the training data have corresponding labels which result in the prediction made on new data. By 

contrast, LRCT models can be examined in such a way to understand the characteristics of the 

model more rigorously. Due to this more explanatory interface between the researcher and LRCT, 

it would perhaps be more useful in certain circumstances for LRCT to be applied in place of KNN. 

In total, several conclusions can be drawn from the results of this study. Firstly, as 

evidenced by the performance of LRCT compared to other decision tree models, it can be 

concluded that feature engineering and selection using linear regression is a powerful technique 

which can be applied to decision tree learning to create multivariate decision trees without harming 

explainability. Secondly, applying these methods for feature engineering and selection do typically 

result in improved predictive performance compared to traditional decision trees and other leading 

multivariate decision tree algorithms. Lastly, these techniques also rival the performance of many 

other interpretable model types; depending on the circumstances surrounding the problem at hand, 

applying these techniques also provide important benefits in terms of added explanatory value. 

 Based on the findings of the literature review, this work makes several original 

contributions to the total body of knowledge in decision trees and XAI. Firstly, as noted previously, 

very little work has been done to truly improve the way decision trees make their splits. Instead, 
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most recent work has been focused on creating ensembles of decision trees to improve overall 

performance. While there has been some work to create multivariate decision trees in particular, 

these models are note widespread in practice. In contrast to this paradigm, this work successfully 

creates a multivariate classification tree algorithm which improves performance compared to 

traditional classification trees and other multivariate trees, marking an improvement over the state 

of the art and a contribution of original knowledge. 

 A second contribution this work provides is in XAI. In contrast to much of the literature 

surrounding XAI, which focuses on bringing higher levels of interpretability and explainability to 

opaque models, this work focuses on developing an inherently interpretable model with greater 

predictive power than existing interpretable models. By taking this opposite approach, this work 

provides original contribution to the field by showing that interpretable models can be developed 

which provide more accurate and powerful predictions instead of relying on building explainability 

into powerful black box models such as neural networks.  

 

Recommendations for Future Research 

While much was discovered and analyzed in this study, there are gaps in knowledge and 

additional research which should be conducted to address these gaps. Generally, these gaps can 

be categorized as relating to the implementation of the LRCT algorithm or to the performance of 

the LRCT algorithm compared to other model types. 

With respect to the LRCT algorithm’s implementation, there are several questions and 

recommendations for future research which can be made. Firstly, as noted previously in this 

work, the implementation used for the LRCT algorithm is much slower than other models. This 

leads to the possible research question: can the LRCT algorithm be optimized for speed without 
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hindering performance? Currently, the algorithm uses a brute force technique to test all 

combinations of variables under the hyperparameters considered. This hyperparameter search is 

computationally costly, and it would be highly beneficial if a heuristic search could be applied to 

this method. It is currently unknown whether such a search could take place without significantly 

hindering the resulting model’s performance, so this problem is left as a major area of future 

research. 

Another possible method for addressing the high computational cost associated with the 

LRCT algorithm would be to investigate whether quantum computing could be utilized to speed 

up the training phase.  As quantum computing continues to mature, its applicability in training 

machine learning models continues to become more and more apparent (Biamonte, et al., 2017).  

Furthermore, it has been shown that linear regression models, in particular, can be trained using a 

quantum algorithm, and that training using this algorithm does result in faster performance than 

when using a classical computer (Schuld, Sinayskiy, & Petruccione, 2016).  It would stand to 

reason, then, that the LRCT algorithm could be adapted to run on a quantum computer as well. 

A second area of future research and improvement in the implementation of the LRCT 

algorithm is whether the algorithm can be modified and applied to regression problems as well. 

The current implementation of the algorithm only supports classification tasks, as it relies on 

there being distinct groups or classes in the target variable. Distinct clusters such as this do not 

exist in a regression problem, but it is potentially possible to apply forms of clustering or other 

aggregation technique to artificially impose such groups or classes on the otherwise continuous 

target variable. Such research is beyond the scope of this work, but it would be a logical 

following stage for the research. 
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Regarding LRCT’s performance against other model types, one of the primary areas of 

future research would be to test the algorithm’s performance against some of the ensemble 

methods discussed previously, such as the random forest (Breiman, Random Forests, 2001). 

While many of these methods are not inherently as explainable or interpretable as CART or 

LRCT, they do consistently outperform other model types and often offer interpretability or 

explainability interfaces. Future research should therefore be conducted to test LRCT’s 

performance against such model types to help understand whether LRCT can provide the same 

predictive power of ensembles within a single, easy to understand model. The final question 

which follows would be whether ensembles of LRCT models, either created following the 

methods for random forests or for other types of models, would provide additional performance 

improvements compared to other ensemble methods. 

 

Chapter Summary 

In this chapter, the final of this work, the results of the experiments presented in Chapter 

4 are analyzed in greater detail, the answers to the RQs posed at the beginning of this work are 

explored, general conclusions are derived, and recommendations for future research are made. 

In summary, the results of the experiments conducted in this research positively answer 

the RQs posed: applying linear regression as an intermediate feature engineering step during 

splitting in a classification tree does improve the tree’s performance compared to traditional 

classification tree algorithms. Furthermore, the LRCT algorithm proposed here also sees 

increased performance compared to other multivariate tree methods, and it also performs 

competitively with all other interpretable methods tested. These results, combined with the 

improved interpretability of the LRCT algorithm compared even to some other interpretable 
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methods, leads to the conclusion that inherently interpretable models can be created with 

improved predictive performance compared to traditional models. With further research into 

improving the training speed and types of questions which can be trained using the methods 

proposed here, as well as additional research in comparing LRCT’s performance with ensemble 

methods, it is possible that inherently interpretable methods can help bring ML and AI to many 

industries which require better performance and more explainability than the current state of the 

art.
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